Numerical simulations of the deep roadway were carried out through application of the strain-softening constitutive model. Differences between the deep and shallow roadway of the rock bearing structure were analyzed. ...Numerical simulations of the deep roadway were carried out through application of the strain-softening constitutive model. Differences between the deep and shallow roadway of the rock bearing structure were analyzed. Influences of the supporting resistance on the rock bearing structure at the deep roadway were discussed. The results show that there is alternation of strong and weak strength-softening region in the surrounding rock of deep roadway. However, the increase in the supporting resistance cuts down the size of strength-softening region of surrounding rock, decreases its strength-softening degree, and im- proves the stress distribution condition of the surrounding rock mass. It is concluded that the supporting resistance can raise the self-supporting ability of surrounding rock through controlling its strength-softening so as to make the rock bearing structure of deep roadway stable.展开更多
This study focuses on the stress and displacement of a circular opening that is excavated in a strain-softening rock mass under hydraulic-mechanical coupling.It follows the generalized Hoek-Brown(H-B) failure criterio...This study focuses on the stress and displacement of a circular opening that is excavated in a strain-softening rock mass under hydraulic-mechanical coupling.It follows the generalized Hoek-Brown(H-B) failure criterion.Moreover,an improved numerical method and stepwise procedure are proposed.This method considers the deterioration of the strength,deformation,and dilation angle.It also incorporates the hydraulic-mechanical coupling and the variation of elastic strain in the plastic region.Several examples are conducted to demonstrate the validity and accuracy of the proposed solution through MATLAB programming and FLAC software.Parametric studies are also conducted to highlight the influence of hydraulic–mechanical coupling on stress and displacement.Results show that in this case,stress confinement is lower and tunnel convergences are higher than the corresponding stresses and displacements obtained when those factors are not considered.The displacement and plastic radius are also larger than those obtained when hydraulic-mechanical coupling is not considered.展开更多
文摘Numerical simulations of the deep roadway were carried out through application of the strain-softening constitutive model. Differences between the deep and shallow roadway of the rock bearing structure were analyzed. Influences of the supporting resistance on the rock bearing structure at the deep roadway were discussed. The results show that there is alternation of strong and weak strength-softening region in the surrounding rock of deep roadway. However, the increase in the supporting resistance cuts down the size of strength-softening region of surrounding rock, decreases its strength-softening degree, and im- proves the stress distribution condition of the surrounding rock mass. It is concluded that the supporting resistance can raise the self-supporting ability of surrounding rock through controlling its strength-softening so as to make the rock bearing structure of deep roadway stable.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB036004)the National Natural Science Foundation of China(Grant No.51208523)China Postdoctoral Science Foundation(Grant No.2003034468)
文摘This study focuses on the stress and displacement of a circular opening that is excavated in a strain-softening rock mass under hydraulic-mechanical coupling.It follows the generalized Hoek-Brown(H-B) failure criterion.Moreover,an improved numerical method and stepwise procedure are proposed.This method considers the deterioration of the strength,deformation,and dilation angle.It also incorporates the hydraulic-mechanical coupling and the variation of elastic strain in the plastic region.Several examples are conducted to demonstrate the validity and accuracy of the proposed solution through MATLAB programming and FLAC software.Parametric studies are also conducted to highlight the influence of hydraulic–mechanical coupling on stress and displacement.Results show that in this case,stress confinement is lower and tunnel convergences are higher than the corresponding stresses and displacements obtained when those factors are not considered.The displacement and plastic radius are also larger than those obtained when hydraulic-mechanical coupling is not considered.