A line contact model of elastic coated solids is presented based on the influence coefficients(ICs) of surface displacement and stresses of coating-substrate system and the traditional contact model. The ICs of displa...A line contact model of elastic coated solids is presented based on the influence coefficients(ICs) of surface displacement and stresses of coating-substrate system and the traditional contact model. The ICs of displacement and stresses are obtained from their corresponding frequency response functions(FRF) by using a conversion method based on fast Fourier transformation(FFT). The contact pressure and the stress field in the subsurface are obtained by employing conjugate gradient method(CGM) and discrete convolution fast Fourier transformation(DC-FFT). Comparison of the contact pressure and subsurface stresses obtained by the numerical method with the exact analytical solutions for Hertz contact is conducted, and the results show that the numerical solution has a very high accuracy and verify the validity of the contact model. The effect of the stiffness and thickness of coatings is further numerically studied. The result shows that the effects on contact pressure and contact width are opposite for hard and soft coatings and are intensified with the increase of coating thickness; the locations of crack initiation and propagation are different for soft and hard coatings; the risk of cracks and delaminations of coatings can be brought down by improving the lubrication condition or optimizing the non-dimensional parameter h/bh. This research offers a tool to numerically analyze the problem of elastic coated solids in line contact and make the blindness and randomness of trial-type coating design less.展开更多
This paper proposes a numerical methodology for the prediction of the first three modes of vibration of an electric motor fixed on a rigid base. A deep literature review supported the production of four ad hoc prototy...This paper proposes a numerical methodology for the prediction of the first three modes of vibration of an electric motor fixed on a rigid base. A deep literature review supported the production of four ad hoc prototypes that aided the development of the proposed approach. Tests carried out with the prototypes led to the procurement of the modal parameters be used to calibrate the numerical models, as well as the FRF (frequency response function) curves be used to validate the numerical solution. The validated model allowed structural changes to be then promoted on the prototypes, in order to make them more robust to variations in manufacturing and assembling processes. The mentioned adjustments and structural changes were accomplished by means of a process of structural optimization using Genetic Algorithm. The solution was developed based on the commercial finite element code ANSYS. The practical results obtained in this study show that a numerical model for modal analysis of an electric motor fixed on a rigid base with errors less than 3% for the first three modes of vibration can be achieved, allowing positive structural changes to be performed in the machine design that result in the minimization of manufacturing reworks associated with the dynamic behavior of the studied motor.展开更多
基金Project(2013CB632305)supported by the National Basic Research Program of ChinaProject(51375108)supported by the National Natural Science Foundation of China
文摘A line contact model of elastic coated solids is presented based on the influence coefficients(ICs) of surface displacement and stresses of coating-substrate system and the traditional contact model. The ICs of displacement and stresses are obtained from their corresponding frequency response functions(FRF) by using a conversion method based on fast Fourier transformation(FFT). The contact pressure and the stress field in the subsurface are obtained by employing conjugate gradient method(CGM) and discrete convolution fast Fourier transformation(DC-FFT). Comparison of the contact pressure and subsurface stresses obtained by the numerical method with the exact analytical solutions for Hertz contact is conducted, and the results show that the numerical solution has a very high accuracy and verify the validity of the contact model. The effect of the stiffness and thickness of coatings is further numerically studied. The result shows that the effects on contact pressure and contact width are opposite for hard and soft coatings and are intensified with the increase of coating thickness; the locations of crack initiation and propagation are different for soft and hard coatings; the risk of cracks and delaminations of coatings can be brought down by improving the lubrication condition or optimizing the non-dimensional parameter h/bh. This research offers a tool to numerically analyze the problem of elastic coated solids in line contact and make the blindness and randomness of trial-type coating design less.
文摘This paper proposes a numerical methodology for the prediction of the first three modes of vibration of an electric motor fixed on a rigid base. A deep literature review supported the production of four ad hoc prototypes that aided the development of the proposed approach. Tests carried out with the prototypes led to the procurement of the modal parameters be used to calibrate the numerical models, as well as the FRF (frequency response function) curves be used to validate the numerical solution. The validated model allowed structural changes to be then promoted on the prototypes, in order to make them more robust to variations in manufacturing and assembling processes. The mentioned adjustments and structural changes were accomplished by means of a process of structural optimization using Genetic Algorithm. The solution was developed based on the commercial finite element code ANSYS. The practical results obtained in this study show that a numerical model for modal analysis of an electric motor fixed on a rigid base with errors less than 3% for the first three modes of vibration can be achieved, allowing positive structural changes to be performed in the machine design that result in the minimization of manufacturing reworks associated with the dynamic behavior of the studied motor.