A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed u...A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology.展开更多
Three different stress states of the combination of tensile(t) stress and compressive(c) stress,t t,t c and t c c,exist in the deformed commercially pure titanium(CP-Ti) sheet during cold drawing-bulging.The tex...Three different stress states of the combination of tensile(t) stress and compressive(c) stress,t t,t c and t c c,exist in the deformed commercially pure titanium(CP-Ti) sheet during cold drawing-bulging.The textures and microstructures in the different stress state regions were investigated by means of XRD and TEM analysis.Similar development of texture and microstructure is achieved with less thickness strain under multiaxial stresses in drawing-bulging than in cold rolling.The results show that texture and microstructure are much sensitive to multiaxial stresses.Twinning is more easily activated under compressive stress than tensile stress.Prism a slip is heavily affected by tensile stress,resulting in a remarkable change of the intensity of(0°,35°,0°) texture,while pyramidal c+a slip,forming(20°,35°,30°) texture,weakens with the increase of thickness strain in spite of stress state.展开更多
In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embank...In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embankment section were simulated by ABAQUS. The simulation results indicate that the matric suction was a concave distribution on top of the expansive soil foundation and that it induced differential deformation of foundation and embankment. The peaks of tensile stress on top of the embankment are not located at a fixed site, but gradually move towards the shoulder following the evaporation duration. When the evaporation intensity is larger, the peak of tensile stress on top of embankment increases at a faster rate following the evaporation duration,and its location is closer to the shoulder. The thicker expansive soil layer helps the peaks of tensile stress to reach the critical tensile stress quickly, but the embankment cannot crack when the expansive soil layer is no more than 1.5m after 30d soil surface evaporation; the higher the embankment, the smaller the peak of tensile stress occurring on top of the highway embankment, and its location will be further away from the shoulder. Therefore, a higher embankment constructed on a thinner expansive soil layer can reduce the crack generation within the highway embankment.展开更多
Size effects on plastic deformation behaviors in uniaxial micro tension of pure nickel fine wires were investigated experimentally, including flow stress and inhomogeneous deformation behaviors. It is found that with ...Size effects on plastic deformation behaviors in uniaxial micro tension of pure nickel fine wires were investigated experimentally, including flow stress and inhomogeneous deformation behaviors. It is found that with the increase of grain size or the decrease of number of grains across the diameter, the flow stress decreases and inhomogeneous deformation degree increases. When there are less than 9.3 grains across the diameter, the flow stress decreases quickly with the increase of grain size. Then, the flow stress size effect in micro tension of fine wires is revealed by a proposed model by introducing the grain boundary size factor. These results also indicate that both the fracture strain and stress decrease with the increase of grain size. When there are less than 14.7 grains across the diameter, both the fracture strain and stress decrease quickly. This indicates that the inhomogeneous deformation degree in micro tension increases with the decrease of the number of grains across the diameter. The fracture topography tends to be more and more irregular with the decrease of the number of grains across the diameter. Then, the formation mechanism of irregular fracture topography was analyzed considering the inhomogeneous distribution of microstructure when there are a few grains across the diameter.展开更多
The failure modes of rock and soil under compression are complex phenomena that have not been explained in a mechanical perspective. However, large amounts of studies indicate that the failure modes of rock and soil s...The failure modes of rock and soil under compression are complex phenomena that have not been explained in a mechanical perspective. However, large amounts of studies indicate that the failure modes of rock and soil samples can be categorized into eight types. In this work, the inner tensile stress and the dissipation and conversion of energy of rock and soil under compression are analyzed, then the effective conversion coefficient of energy is deduced, thus the tensile failure criterion of rock and soil under compression is established. Combined with the shear strength criterion of Mohr–Coulomb, a tensile joint shear strength criterion for rock and soil under compression is built. Therefore, a mechanical criterion model concerning the failure modes of rock and soil under compression is established and verified by tests. This model easily explains the test results in the existing literature and many natural phenomena, such as collapse.展开更多
The important parameters that influence the mechanical property of the pavinglayer on an orthotropic steel bridge deck are the paving layer thickness and modulus of the asphaltconcrete surfacing. Three important indic...The important parameters that influence the mechanical property of the pavinglayer on an orthotropic steel bridge deck are the paving layer thickness and modulus of the asphaltconcrete surfacing. Three important indices that control the typical failures of the paving layerare the maximum tensile stress of paving layer, the maximum shear stress between the steel deck andthe paving layer, and the maximum deflection on the paving surface. In this paper, the analyticalmodel of paving systems on orthotropic steel bridge deck is established, and the finite elementmethod is adopted to study the stress and strain of paving system. With the variation of asphaltconcrete modulus in high or low temperature season, the influences of paving layer thickness onthree control indices are researched. The results provide a theoretical basis for the determinationof thickness of the paving layer on the steel bridge deck.展开更多
The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o...The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.展开更多
The stress intensity factors and stress conditions of machining cracks are analyzed by fracture mechanics on the basis of honing characteristics and of brittle ceramic mechanical behavior.Because the honing incidental...The stress intensity factors and stress conditions of machining cracks are analyzed by fracture mechanics on the basis of honing characteristics and of brittle ceramic mechanical behavior.Because the honing incidental tensile stresses effectively decrease the critical grinding stresses and increase the stress intensity factors of machining cracks,the honing process can be carried out easily.The results show that honing can be an efficient machining method for brittle materials.展开更多
Tensile behaviors of an AZS0 alloy were investigated by elongation-to-failure tensile tests at 300, 350, 400 and 450 ℃, and strain rates of 10-2 and 10-3 s 1. Strain-rate-change tests from 5×10-5 s-1 to 2x10-2 s...Tensile behaviors of an AZS0 alloy were investigated by elongation-to-failure tensile tests at 300, 350, 400 and 450 ℃, and strain rates of 10-2 and 10-3 s 1. Strain-rate-change tests from 5×10-5 s-1 to 2x10-2 s-1 were applied to study deformation mechanisms. The experimental data show that the material exhibits enhanced tensile ductilities of over 100% at 400 and 450 ℃ with stress exponent of 4.29 and activation energy of 149.60 kJ/mol, and initial fine grains preserve in evenly deformed gauge based on microstructure studies. The enhanced tensile ductilities are rate controlled by a competitive mechanism of grain boundary sliding and dislocation climb creep, based on which a model can successfully simulate the deformation behavior.展开更多
To study the effect of annealing temperature on the joints between magnesium and aluminum alloys, and improve the properties of bonding layers, composite plates of magnesium alloy(AZ31 B) and aluminum alloy(6061) ...To study the effect of annealing temperature on the joints between magnesium and aluminum alloys, and improve the properties of bonding layers, composite plates of magnesium alloy(AZ31 B) and aluminum alloy(6061) were welded using the vacuum diffusion bonding method. The composite specimens were continuously annealed in an electrical furnace under the protection of argon gas. The microstructures were then observed using scanning electron microscopy. X-ray diffractometry was used to investigate the residual stresses in the specimens. The elemental distribution was analyzed with an electron probe micro analyzer. The tensile strength and hardness were also measured. Results show that the diffusion layers become wide as the heat treatment temperature increases, and the residual stress of the specimen is at a minimum and tensile strength is the largest when being annealed at 250 ℃. Therefore, 250 ℃ is the most appropriate annealing temperature.展开更多
The terminal velocity of a liquid droplet settling in a sulfactant solution has been studied for the non-linear adsorption Langmuir frameworks accounting for monolayer saturation and non-ideal surfactant interactions....The terminal velocity of a liquid droplet settling in a sulfactant solution has been studied for the non-linear adsorption Langmuir frameworks accounting for monolayer saturation and non-ideal surfactant interactions. Most prior research uses a linear adsorption model which cannot capture these effects, The Maragoni migration of a liquid drop settling through a surfactant solution is examined by using Langmuir framework. The solution concentration Ceq is assumed large enough for the surfactant mass transfer to be adsorption-controlled. Langmuir model generates non-linear Marangoni stresses which diverge in the limit of approaching ∝, strongly retarding U'.展开更多
Soil behavior can reflect the characteristics of principal stress rotation under dynamic wave and traffic loads. Unequal amplitudes of tensile and compressive stresses applied to soils have complex effects on foundati...Soil behavior can reflect the characteristics of principal stress rotation under dynamic wave and traffic loads. Unequal amplitudes of tensile and compressive stresses applied to soils have complex effects on foundation soils in comparison with the pure principal stress rotation path. A series of undrained cyclic hollow torsional shear tests were performed on typical remolded soft clay from the Hexi area of Nanjing, China. The main control parameters were the tensile and compressive stress amplitude ratio(α) and the cyclic dynamic stress ratio(η). It was found that the critical η tended to remain constant at 0.13, when the value of the compressive stress amplitude was higher than the tensile stress amplitude. However, the influence of the tensile stress was limited by the dynamic stress level when α= 1.For obvious structural change in the soil, the corresponding numbers of cyclic vibration cycles were found to be independent of α at low stress levels and were only related to η. Finally, a new method for evaluating the failure of remolded soft clay was presented. It considers the influence of the tensile and compressive stresses which caused by complex stress paths of the principal stress rotation. This criterion can distinguish stable, critical, and destructive states based on the pore-water-pressure-strain coupling curve while also providing a range of failure strain and vibration cycles. These results provide the theoretical support for systematic studies of principal stress rotation using constitutive models.展开更多
The bending stresses of top tensioned riser(TTR) under combined excitations of currents,random waves and vessel motions are presented in this paper,and the effect of the internal flowing fluid on the riser stresses is...The bending stresses of top tensioned riser(TTR) under combined excitations of currents,random waves and vessel motions are presented in this paper,and the effect of the internal flowing fluid on the riser stresses is also considered.The computation programs which are used to solve the differential equations in the time domain are compiled and the principal factors of concern including the angular movements at the upper and lower ends of the riser,lateral displacements and bending stresses are presented.Then the effects of current velocity,random wave,top tension,vessel mean offset,low frequency motion and internal flow velocity on the bending stresses of the riser are analyzed in detail.展开更多
An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler mater...An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler material had an average grain size of about 12 μm.The microhardness and the tensile strength of the weldments were similar to those of the parent alloy.However,the stress corrosion cracking (SCC) behaviour of both the weldments assessed by slow strain rate tensile (SSRT) tests in ASTM D1384 solution was found to be slightly inferior to that of the parent alloy.It was observed that the stress corrosion cracks originated in the weld metal and propagated through the weld metal-HAZ regions in the autogenous weldment.On the other hand,in the weldment obtained with AZ61 filler material,the crack initiation and propagation was in the HAZ region.The localized damage of the magnesium hydroxide/oxide film formed on the surface of the specimens due to the exposure to the corrosive environment during the SSRT tests was found to be responsible for the SCC.展开更多
By inverting fault slip data, the parameters of 12 tectonic stress tensors in the mine region can be determined. The following characteristics can be obtained for recent tectonic stress fields, which are found deep in...By inverting fault slip data, the parameters of 12 tectonic stress tensors in the mine region can be determined. The following characteristics can be obtained for recent tectonic stress fields, which are found deep in the study region. The results show that the recent tectonic stress field mainly presents the characteristics of near NWW-SSE maximum compressional stress and near NE-SW minimum extensional stress, while the stress regimes are mainly of strike slip, part of the reverse-fault type. Recent tectonic stress field in the region is characterized by horizontal components. The maximum principal compression stress direction was from NEE to SEE, the average principal compression stress direction was near NWW-SSE maximum compres- sional stress and near NE-SW minimum extensional. The recent tectonic stress field of the studied area can be controlled by a large tectonic stress area.展开更多
The key in the force transmission between the tower and the foundation for offshore wind turbines is to transfer the large moment and horizontal loads. The finite element model of a large-scale prestressing bucket fou...The key in the force transmission between the tower and the foundation for offshore wind turbines is to transfer the large moment and horizontal loads. The finite element model of a large-scale prestressing bucket founda- tion for offshore wind turbines is set up and the structural characteristics of the arc transition structure of the founda- tion are analyzed for 40-60 channels(20-30 rows) arranged with prestressing steel strand under the same ultimate load and boundary conditions. The mechanical characteristics of the key parts of the foundation structures are illus- trated by the peak of the principal tensile stress, the peak of the principal compressive stress and the distribution areas where the principal tensile stress is larger than 2.00 MPa. It can be concluded that the maximum principal tensile stress of the arc transition decreases with the increasing number of channels, and the amplitude does not change signifi- cantly; the maximum principal compressive stress increases with the increasing number of channels and the amplitude changes significantly; however, for the distribution areas where the principal tensile stress is larger than 2.00 MPa, with different channel numbers, the phenomenon is not obvious. Furthermore, the principal tensile stress at the top of the foundation beams fluctuantly increases with the increasing number of channels and for the top cover of the bucket, the principal tensile stress decreases with the increasing number of channels.展开更多
Tensile properties of as-deformed 2A50 aluminum alloy were investigated in the high temperature solid and semi-solid states. The results show that temperature has almost no effect on the maximum tensile stress between...Tensile properties of as-deformed 2A50 aluminum alloy were investigated in the high temperature solid and semi-solid states. The results show that temperature has almost no effect on the maximum tensile stress between 500 ℃ and 530 ℃, and the maximum tensile stress decreases rapidly when the temperature is above 532 ℃. The ductility decreases with increasing temperature and has an obvious fall when the temperature is above solidus temperature. This alloy almost has no ductility above 537 ℃, and cannot sustain tensile stress above 550℃. A brittle temperature range in which this alloy is prone to form microcracks was derived. The relation between microstructure, fraction solid and tensile properties were also investigated by examining the metallograph and fracture surface morphology of tested specimens, which could provide reference for forecasting the microcracks in this alloy occurring in semi-solid processing.展开更多
To obtain the design parameters of the structure made by ecological high ductility cementitious composites(Eco-HDCC),the effects of curing age on the compressive and tensile stress-strain relationships were studied.Th...To obtain the design parameters of the structure made by ecological high ductility cementitious composites(Eco-HDCC),the effects of curing age on the compressive and tensile stress-strain relationships were studied.The reaction degree of fly ash,non-evaporable water content and the pH value in pore solution were calculated to reveal the mechanical property.The results indicate that as the curing age increases,the peak compressive strength,peak compressive strain and ultimate tensile strength of Eco-HDCC increase.However,the ultimate compressive strain and ultimate tensile strain of Eco-HDCC decrease with the increase in curing age.Besides,as the curing age increases,the reaction degree of fly ash and non-evaporable water content in Eco-HDCC increase,while the pH value in the pore solution of Eco-HDCC decreases.Finally,the simplified compressive and tensile stress-strain constitutive relationship models of Eco-HDCC with a curing age of 28 d were suggested for the structure design safety.展开更多
文摘A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology.
基金Project(2010CB731701) supported by the National Basic Research Program of ChinaProjects(50805121,51175428) supported by the National Natural Science Foundation of China+3 种基金Project(50935007) supported by the National Natural Science Foundation of China for Key ProgramProject(NPU-FFR-JC20100229) supported by the Foundation for Fundamental Research of Northwestern Polytechnical University in ChinaProject(2011-P06) supported by the Foundation of the State Key Laboratory of Materials Processing and Die & Mould Technology,Huazhong University of Science and TechnologyProject(B08040) supported by Program of Introducing Talents of Discipline to Universities("111"),China
文摘Three different stress states of the combination of tensile(t) stress and compressive(c) stress,t t,t c and t c c,exist in the deformed commercially pure titanium(CP-Ti) sheet during cold drawing-bulging.The textures and microstructures in the different stress state regions were investigated by means of XRD and TEM analysis.Similar development of texture and microstructure is achieved with less thickness strain under multiaxial stresses in drawing-bulging than in cold rolling.The results show that texture and microstructure are much sensitive to multiaxial stresses.Twinning is more easily activated under compressive stress than tensile stress.Prism a slip is heavily affected by tensile stress,resulting in a remarkable change of the intensity of(0°,35°,0°) texture,while pyramidal c+a slip,forming(20°,35°,30°) texture,weakens with the increase of thickness strain in spite of stress state.
基金The National Natural Science Foundation of China(No.51378121)
文摘In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embankment section were simulated by ABAQUS. The simulation results indicate that the matric suction was a concave distribution on top of the expansive soil foundation and that it induced differential deformation of foundation and embankment. The peaks of tensile stress on top of the embankment are not located at a fixed site, but gradually move towards the shoulder following the evaporation duration. When the evaporation intensity is larger, the peak of tensile stress on top of embankment increases at a faster rate following the evaporation duration,and its location is closer to the shoulder. The thicker expansive soil layer helps the peaks of tensile stress to reach the critical tensile stress quickly, but the embankment cannot crack when the expansive soil layer is no more than 1.5m after 30d soil surface evaporation; the higher the embankment, the smaller the peak of tensile stress occurring on top of the highway embankment, and its location will be further away from the shoulder. Therefore, a higher embankment constructed on a thinner expansive soil layer can reduce the crack generation within the highway embankment.
基金Projects(51375111,51375113,51505101)supported by the National Natural Science Foundation of ChinaProject(2015M571407)supported by the China Postdoctoral Science Foundation
文摘Size effects on plastic deformation behaviors in uniaxial micro tension of pure nickel fine wires were investigated experimentally, including flow stress and inhomogeneous deformation behaviors. It is found that with the increase of grain size or the decrease of number of grains across the diameter, the flow stress decreases and inhomogeneous deformation degree increases. When there are less than 9.3 grains across the diameter, the flow stress decreases quickly with the increase of grain size. Then, the flow stress size effect in micro tension of fine wires is revealed by a proposed model by introducing the grain boundary size factor. These results also indicate that both the fracture strain and stress decrease with the increase of grain size. When there are less than 14.7 grains across the diameter, both the fracture strain and stress decrease quickly. This indicates that the inhomogeneous deformation degree in micro tension increases with the decrease of the number of grains across the diameter. The fracture topography tends to be more and more irregular with the decrease of the number of grains across the diameter. Then, the formation mechanism of irregular fracture topography was analyzed considering the inhomogeneous distribution of microstructure when there are a few grains across the diameter.
基金Projects(41572277,41402239)supported by the National Natural Science Foundation of ChinaProject(2015A030313118)supported by the Natural Science Foundation of Guangdong Province,China+1 种基金Project(20120171110031)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(201607010023)supported by the Science and Technology Program of Guangzhou,China
文摘The failure modes of rock and soil under compression are complex phenomena that have not been explained in a mechanical perspective. However, large amounts of studies indicate that the failure modes of rock and soil samples can be categorized into eight types. In this work, the inner tensile stress and the dissipation and conversion of energy of rock and soil under compression are analyzed, then the effective conversion coefficient of energy is deduced, thus the tensile failure criterion of rock and soil under compression is established. Combined with the shear strength criterion of Mohr–Coulomb, a tensile joint shear strength criterion for rock and soil under compression is built. Therefore, a mechanical criterion model concerning the failure modes of rock and soil under compression is established and verified by tests. This model easily explains the test results in the existing literature and many natural phenomena, such as collapse.
文摘The important parameters that influence the mechanical property of the pavinglayer on an orthotropic steel bridge deck are the paving layer thickness and modulus of the asphaltconcrete surfacing. Three important indices that control the typical failures of the paving layerare the maximum tensile stress of paving layer, the maximum shear stress between the steel deck andthe paving layer, and the maximum deflection on the paving surface. In this paper, the analyticalmodel of paving systems on orthotropic steel bridge deck is established, and the finite elementmethod is adopted to study the stress and strain of paving system. With the variation of asphaltconcrete modulus in high or low temperature season, the influences of paving layer thickness onthree control indices are researched. The results provide a theoretical basis for the determinationof thickness of the paving layer on the steel bridge deck.
基金Project (51005154) supported by the National Natural Science Foundation of ChinaProject (12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission, ChinaProject (201104271) supported by the China Postdoctoral Science Foundation
文摘The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.
文摘The stress intensity factors and stress conditions of machining cracks are analyzed by fracture mechanics on the basis of honing characteristics and of brittle ceramic mechanical behavior.Because the honing incidental tensile stresses effectively decrease the critical grinding stresses and increase the stress intensity factors of machining cracks,the honing process can be carried out easily.The results show that honing can be an efficient machining method for brittle materials.
基金Project(50801034)supported by the National Natural Science Foundation of ChinaProject(LJQ 2011026)supported by Development Foundation for Excellent Young Scholars in Universities of Liaoning Province,ChinaProject(2006207)supported by Foundation for "Ten-Hundred-Thousand" High-end Talent Introduction Project in Liaoning Province,China
文摘Tensile behaviors of an AZS0 alloy were investigated by elongation-to-failure tensile tests at 300, 350, 400 and 450 ℃, and strain rates of 10-2 and 10-3 s 1. Strain-rate-change tests from 5×10-5 s-1 to 2x10-2 s-1 were applied to study deformation mechanisms. The experimental data show that the material exhibits enhanced tensile ductilities of over 100% at 400 and 450 ℃ with stress exponent of 4.29 and activation energy of 149.60 kJ/mol, and initial fine grains preserve in evenly deformed gauge based on microstructure studies. The enhanced tensile ductilities are rate controlled by a competitive mechanism of grain boundary sliding and dislocation climb creep, based on which a model can successfully simulate the deformation behavior.
基金partially supported by the grant subsidy of the "Nano Project" for Private Universities: 2011-2014 from MEXT, Japansupported by the "Advanced Science Research Laboratory" in Saitama Institute of Technology, Japan
文摘To study the effect of annealing temperature on the joints between magnesium and aluminum alloys, and improve the properties of bonding layers, composite plates of magnesium alloy(AZ31 B) and aluminum alloy(6061) were welded using the vacuum diffusion bonding method. The composite specimens were continuously annealed in an electrical furnace under the protection of argon gas. The microstructures were then observed using scanning electron microscopy. X-ray diffractometry was used to investigate the residual stresses in the specimens. The elemental distribution was analyzed with an electron probe micro analyzer. The tensile strength and hardness were also measured. Results show that the diffusion layers become wide as the heat treatment temperature increases, and the residual stress of the specimen is at a minimum and tensile strength is the largest when being annealed at 250 ℃. Therefore, 250 ℃ is the most appropriate annealing temperature.
文摘The terminal velocity of a liquid droplet settling in a sulfactant solution has been studied for the non-linear adsorption Langmuir frameworks accounting for monolayer saturation and non-ideal surfactant interactions. Most prior research uses a linear adsorption model which cannot capture these effects, The Maragoni migration of a liquid drop settling through a surfactant solution is examined by using Langmuir framework. The solution concentration Ceq is assumed large enough for the surfactant mass transfer to be adsorption-controlled. Langmuir model generates non-linear Marangoni stresses which diverge in the limit of approaching ∝, strongly retarding U'.
基金financial support of the National Natural Science Foundation of China(51420105013 and 51479060)Fundamental Research Funds for the Central Universities(2015B17114)Science and Technology Project of Shandong Housing and Urban-Rural Development(2014QG009)
文摘Soil behavior can reflect the characteristics of principal stress rotation under dynamic wave and traffic loads. Unequal amplitudes of tensile and compressive stresses applied to soils have complex effects on foundation soils in comparison with the pure principal stress rotation path. A series of undrained cyclic hollow torsional shear tests were performed on typical remolded soft clay from the Hexi area of Nanjing, China. The main control parameters were the tensile and compressive stress amplitude ratio(α) and the cyclic dynamic stress ratio(η). It was found that the critical η tended to remain constant at 0.13, when the value of the compressive stress amplitude was higher than the tensile stress amplitude. However, the influence of the tensile stress was limited by the dynamic stress level when α= 1.For obvious structural change in the soil, the corresponding numbers of cyclic vibration cycles were found to be independent of α at low stress levels and were only related to η. Finally, a new method for evaluating the failure of remolded soft clay was presented. It considers the influence of the tensile and compressive stresses which caused by complex stress paths of the principal stress rotation. This criterion can distinguish stable, critical, and destructive states based on the pore-water-pressure-strain coupling curve while also providing a range of failure strain and vibration cycles. These results provide the theoretical support for systematic studies of principal stress rotation using constitutive models.
基金supported by the High Technology Research and Development Program of China (863 Program, Grant Nos SQ2009AA09Z3487852 and 2007AA09Z313)
文摘The bending stresses of top tensioned riser(TTR) under combined excitations of currents,random waves and vessel motions are presented in this paper,and the effect of the internal flowing fluid on the riser stresses is also considered.The computation programs which are used to solve the differential equations in the time domain are compiled and the principal factors of concern including the angular movements at the upper and lower ends of the riser,lateral displacements and bending stresses are presented.Then the effects of current velocity,random wave,top tension,vessel mean offset,low frequency motion and internal flow velocity on the bending stresses of the riser are analyzed in detail.
文摘An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler material had an average grain size of about 12 μm.The microhardness and the tensile strength of the weldments were similar to those of the parent alloy.However,the stress corrosion cracking (SCC) behaviour of both the weldments assessed by slow strain rate tensile (SSRT) tests in ASTM D1384 solution was found to be slightly inferior to that of the parent alloy.It was observed that the stress corrosion cracks originated in the weld metal and propagated through the weld metal-HAZ regions in the autogenous weldment.On the other hand,in the weldment obtained with AZ61 filler material,the crack initiation and propagation was in the HAZ region.The localized damage of the magnesium hydroxide/oxide film formed on the surface of the specimens due to the exposure to the corrosive environment during the SSRT tests was found to be responsible for the SCC.
文摘By inverting fault slip data, the parameters of 12 tectonic stress tensors in the mine region can be determined. The following characteristics can be obtained for recent tectonic stress fields, which are found deep in the study region. The results show that the recent tectonic stress field mainly presents the characteristics of near NWW-SSE maximum compressional stress and near NE-SW minimum extensional stress, while the stress regimes are mainly of strike slip, part of the reverse-fault type. Recent tectonic stress field in the region is characterized by horizontal components. The maximum principal compression stress direction was from NEE to SEE, the average principal compression stress direction was near NWW-SSE maximum compres- sional stress and near NE-SW minimum extensional. The recent tectonic stress field of the studied area can be controlled by a large tectonic stress area.
基金Supported by Creative Research Groups of National Natural Science Foundation of China (No. 51021004)Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0851)
文摘The key in the force transmission between the tower and the foundation for offshore wind turbines is to transfer the large moment and horizontal loads. The finite element model of a large-scale prestressing bucket founda- tion for offshore wind turbines is set up and the structural characteristics of the arc transition structure of the founda- tion are analyzed for 40-60 channels(20-30 rows) arranged with prestressing steel strand under the same ultimate load and boundary conditions. The mechanical characteristics of the key parts of the foundation structures are illus- trated by the peak of the principal tensile stress, the peak of the principal compressive stress and the distribution areas where the principal tensile stress is larger than 2.00 MPa. It can be concluded that the maximum principal tensile stress of the arc transition decreases with the increasing number of channels, and the amplitude does not change signifi- cantly; the maximum principal compressive stress increases with the increasing number of channels and the amplitude changes significantly; however, for the distribution areas where the principal tensile stress is larger than 2.00 MPa, with different channel numbers, the phenomenon is not obvious. Furthermore, the principal tensile stress at the top of the foundation beams fluctuantly increases with the increasing number of channels and for the top cover of the bucket, the principal tensile stress decreases with the increasing number of channels.
基金Projects(50774026, 50875059) supported by the National Natural Science Foundation of ChinaProject(20070420023) supported by the China Postdoctoral Science FoundationProject(2008AA03A239) supported by the National High-tech Research and Development Program of China
文摘Tensile properties of as-deformed 2A50 aluminum alloy were investigated in the high temperature solid and semi-solid states. The results show that temperature has almost no effect on the maximum tensile stress between 500 ℃ and 530 ℃, and the maximum tensile stress decreases rapidly when the temperature is above 532 ℃. The ductility decreases with increasing temperature and has an obvious fall when the temperature is above solidus temperature. This alloy almost has no ductility above 537 ℃, and cannot sustain tensile stress above 550℃. A brittle temperature range in which this alloy is prone to form microcracks was derived. The relation between microstructure, fraction solid and tensile properties were also investigated by examining the metallograph and fracture surface morphology of tested specimens, which could provide reference for forecasting the microcracks in this alloy occurring in semi-solid processing.
基金The National Natural Science Foundations of China(No.51778133)the Transportation Science&Technology Project of Fujian Province(No.2017Y057)+1 种基金the China Railway Project(No.2017G007-C)Foundation of the China Scholarship Council(No.201906090163).
文摘To obtain the design parameters of the structure made by ecological high ductility cementitious composites(Eco-HDCC),the effects of curing age on the compressive and tensile stress-strain relationships were studied.The reaction degree of fly ash,non-evaporable water content and the pH value in pore solution were calculated to reveal the mechanical property.The results indicate that as the curing age increases,the peak compressive strength,peak compressive strain and ultimate tensile strength of Eco-HDCC increase.However,the ultimate compressive strain and ultimate tensile strain of Eco-HDCC decrease with the increase in curing age.Besides,as the curing age increases,the reaction degree of fly ash and non-evaporable water content in Eco-HDCC increase,while the pH value in the pore solution of Eco-HDCC decreases.Finally,the simplified compressive and tensile stress-strain constitutive relationship models of Eco-HDCC with a curing age of 28 d were suggested for the structure design safety.