In this study,substantial satellitic remote sensing data and atmospheric observational data were used to study a snowfall caused by Bohai sea-effect snow cloud which occurred in Shandong Peninsula from 4 to 6,DEC 2008...In this study,substantial satellitic remote sensing data and atmospheric observational data were used to study a snowfall caused by Bohai sea-effect snow cloud which occurred in Shandong Peninsula from 4 to 6,DEC 2008.The study results show that the snow cloud emerged in the strong northwesterly cold flow in the middle-lower troposphere,the southwest of northeast cold vortex,and cyclonic bending on the surface pressure-field.Although the snowstorm cloud was shallow convective,its cold center was quite strong,the average snowfall rate was 0.41 mm/h during the exuberant period,and the snowfall rate was distributed in strip.The upwelling longwave fluxes on the cloud top were not only related to the temperature,but also related to the ice water content of the cloud,when we study the clouds effect on the radiation,we should consider the rainfall(snowfall)strength of the cloud.展开更多
yTwo exotic species, Sonneratia caseolaris (L.) Engl. and S. apetala B. Ham., were introduced to Futian Mangrove Forest Nature Reserve, Shenzhen Bay, in 1993 for afforestation. Winter cold caused frigid harm but did n...yTwo exotic species, Sonneratia caseolaris (L.) Engl. and S. apetala B. Ham., were introduced to Futian Mangrove Forest Nature Reserve, Shenzhen Bay, in 1993 for afforestation. Winter cold caused frigid harm but did not appear to be an obstacle to the introduction. The cold tolerance of the parental and filial generation increased in several years. The two Sonneratia spp. could propagate by seeds and disperse in Shenzhen Bay. While the two species grew faster than indigenous species, at the same time they promoted the growth of indigenous species, but they could not replace indigenous mangrove species. Suitable habitat was more important than the distance from the source in the natural spreading for the two species. The niche of the two species did not overlap with the niche of indigenous species. The two species did not self regenerate, although they could disperse on localized area in Shenzhen Bay. Therefore, it was unlikely that the two species would pose ecological disaster.展开更多
In some critics’view, experience would be an important element to be shown in one’sworks. The more experience an artist has got, the higher aesthetic he would express in hisworks. But, here’s six artists, Zhou Peid...In some critics’view, experience would be an important element to be shown in one’sworks. The more experience an artist has got, the higher aesthetic he would express in hisworks. But, here’s six artists, Zhou Peide, Han Jvliang, Cheng Junjie, Tong Jianying, YingHaihai and Sun Huayi, can not be described in experience.Coming from the same art college in Shanghai, their vibrantworks would show a deeper aesthetic beyond their words...展开更多
The sea-level change is resulted from superposition of sun, moon and other planeries, and earth itself, biological process, atmosphere and oceanography, as well as artificial actions. As a result, the sea level change...The sea-level change is resulted from superposition of sun, moon and other planeries, and earth itself, biological process, atmosphere and oceanography, as well as artificial actions. As a result, the sea level change is really a sensitive integral variation value of many variations, or a combined function of coupling effects of various big systems. Therefore the above mentioned superposed action of different systems and the coupling effect of sun earth and biological aspects may be called as sun earth biological coupling effect system. Based on this hypothesis, the corresponding sun dynamic, air dynamic, water dynamic and earth dynamic conceptional models are established in order to research the multiple coupling effects and feedback machsnism between these big systems. In order to determine the relations, effectness and coherent relation of different variations, the quantity, analysis is conducted through collective variation and stage division. The quantity analysis indicates that the earths spindle rotation speed is the dynamic mechanism controlling the sea level change of fluctuation. The change rate of sea level in the world is +1.32 + 0.22 mm/a, while the sea level change rate in China is only+1.39 + 0.26 mm/a in average. If take the CO2 content as the climate marker, eight cold stages (periods) are grouped out since two hundreds years AC. The extreme cold of the eighth cold stage started approximately at 1850 years AC. and if the stage from the extreme cold to extreme warm is determined as long as 200 years, the present ongoing warm stage will end at about 2050 years, there after the temperature will begin to tower. If the stage between cold and warm extremes lasts for 250 years, then the temperature will become lower at about 2100 year. Until to that time, the sea-level is estimated to raise +7 - +11 + 3.5 cm again, and there after, the sea level will begin the new lowering trend. In the same time, the climate will enter into next new cold stage subsequently.展开更多
Unmanned aerial vehicle has low cost, good flexibility, low risk and high efficiency. When it is applied in maritime supervision, such as maritime patrol, sea cruise, investigation and emergency response, maritime sea...Unmanned aerial vehicle has low cost, good flexibility, low risk and high efficiency. When it is applied in maritime supervision, such as maritime patrol, sea cruise, investigation and emergency response, maritime search and rescue, navigation channel measurement, monitoring and inspection of the oil and sewage spills from ships at sea, it can effectively expand the uses of monitoring sea areas, reduce the phenomenon of illegal use of sea, which can improve modernization construction in maritime supervision. According to the UAV (unmanned aerial vehicle) development and application, this paper explores the advantages of the UAV application in maritime adminstration, as well as the characteristics of maritime adminstration, put forward some countermeasures and suggestions of UAV applied in maritime adminstration.展开更多
Offshore observation platforms are required to have great ability to resist waves when they are operating at sea. Investigation on the motion characteristics of the platforms in the sea can provide significant referen...Offshore observation platforms are required to have great ability to resist waves when they are operating at sea. Investigation on the motion characteristics of the platforms in the sea can provide significant reference values during the platform design procedure. In this paper, a series of numerical simulation on the interaction of a triple-hulled offshore observation platform with different incident waves is carried out. All of the simulations are implemented utilizing our own solver naoe-FOAM-SJTU, which is based and developed on the open source tools of OpenFOAM. Duration curves of motion characteristics and loads acting on the platform are obtained, and a comparison between the results of the amplitude in different incident waves is presented. The results show that the solver is competent in the simulation of motion response of platforms in waves.展开更多
The Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Variability (AMV) are the two dominant low-frequency modes in the climate system. This research focused on the response of these two modes under ...The Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Variability (AMV) are the two dominant low-frequency modes in the climate system. This research focused on the response of these two modes under weak global warming. Observational data were derived from the Hadley Center Sea Ice and Sea Surface Temperature dataset (HadISST) and coupled model outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Changes in PDO and AMV were examined using four models (bcc-csml-1, CCSM4, IPSL-CM5A-LR, and MPI- ESM-LR) with long weak global warming scenarios (RCP2.6). These models captured the two low-frequency modes in both pre-industrial run and RCP2.6 run. Under weak global warming, the time scales of PDO and AMV significantly decreased while the amplitude only slightly decreased. Interestingly, the standard deviation of the North Pacific sea surface temperature anomaly (SSTA) decreased only in decadal time scale, and that of the North Atlantic SSTA decreased both in interannual and decadal time scales. The coupled system consists of a slow ocean component, which has a decadal time scale, and a fast atmospheric component, which is calculated by subtracting the decadal from the total. Results suggest that under global warming, PDO change is dominated by ocean dynamics, and AMV change is dominated by ocean dynamics and stochastic atmosphere forcing.展开更多
The oceanic front is a narrow zone in which water properties change abruptly within a short distance.The sea surface temperature(SST) front is an important type of oceanic front,which plays a significant role in many ...The oceanic front is a narrow zone in which water properties change abruptly within a short distance.The sea surface temperature(SST) front is an important type of oceanic front,which plays a significant role in many fields including fisheries,the military,and industry.Satellite-derived SST images have been used widely for front detection,although these data are susceptible to influence by many objective factors such as clouds,which can cause missing data and a reduction in front detection accuracy.However,front detection in a single SST image cannot fully reflect its temporal variability and therefore,the long-term mean frequency of occurrence of SST fronts and their gradients are often used to analyze the variations of fronts over time.In this paper,an SST front composite algorithm is proposed that exploits the frontal average gradient and frequency more effectively.Through experiments based on MODIS Terra and Aqua data,we verified that fronts could be distinguished better by using the proposed algorithm.Additionally through its use,we analyzed the monthly variations of fronts in the Bohai,Yellow,and East China Seas,based on Terra data from 2000 to 2013.展开更多
The relationship and elevation is a hot issue between species richness in ecology and has been documented extensively. It is widely accepted that area size can significantly affect this relationship and thus mask the ...The relationship and elevation is a hot issue between species richness in ecology and has been documented extensively. It is widely accepted that area size can significantly affect this relationship and thus mask the effects of other predictors. Despite the importance of the relationship between species richness and elevation while accounting for the area effect, it is insufficiently studied. Here, we evaluated area-corrected species richness patterns of all vascular plants as well as six vascular plant subgroups (seed plants, ferns, trees, shrubs, herbs and vines) along a tropical elevational gradient (Hainan Island, China). If assessed in equal-elevation bands, uncorrected species richness showed bell-shaped curves, while area-corrected species richness assessed in equal-area bands appeared to increase monotonically due to the small proportion of highlands on Hainan Island. The mid-domain effect (MDE) was significantly correlated with both uncorrected and area-corrected species richness. On Hainan Island, the use of equal-area elevational bands increased the explanatory power of MDE.These findings provide useful insights to adjust for the area effect and highlight the need to use equal- area bands along the elevational gradient.展开更多
The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sens...The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.展开更多
Diatom data of 192 surface sediment samples from the marginal seas in the western Pacific together with modern summer and winter sea surface temperature and salinity data were analyzed.The results of canonical corresp...Diatom data of 192 surface sediment samples from the marginal seas in the western Pacific together with modern summer and winter sea surface temperature and salinity data were analyzed.The results of canonical correspondence analysis show that summer sea-surface salinity(SSS) is highly positively correlated with winter SSS and so is summer sea-surface temperature(SST) with winter SST.The correlations between SSSs and SSTs are less positively correlated,which may be due to interactions of regional current pattern and monsoon climate.The correlations between diatom species,sample sites and environmental variables concur with known diatom ecology and regional oceanographic characters.The results of forward selection of the environmental variables and associated Monte Carlo permutation tests of the statistical significance of each variable suggest that summer SSS and winter SST are the main environmental factors affecting the diatom distribution in the area and therefore preserved diatom data from down core could be used for reconstructions of summer SSS and winter SST in the region.展开更多
Grading procedure in routine sea cucumber hatchery production is thought to affect juvenile sea cucumber immunologi- cal response. The present study investigated the impact of a 3-min mechanical perturbation mimicking...Grading procedure in routine sea cucumber hatchery production is thought to affect juvenile sea cucumber immunologi- cal response. The present study investigated the impact of a 3-min mechanical perturbation mimicking the grading procedure on neuroendocrine and immune parameters of the sea cucumber Apostichopusjaponicus. During the application of stress, concentrations of noradrenaline and dopamine in coelomic fluid increased significantly, indicating that the mechanical perturbation resulted in a transient state of stress in sea cucumbers. Coelomocytes concentration in coelomic fluid increased transiently after the beginning of stressing, and reached the maximum in 1 h. Whereas, coelomocytes phagocytosis at 3 min, superoxide anion production from 3 min to 0.5 h, acid phosphatase activity at 0.5 h, and phenoloxidase activity from 3 min to 0.5 h were all significantly down-regulated. All of the immune parameters recovered to baseline levels after the experiment was conducted for 8 h, and an immunostimulation occurred after the stress considering the phagocytosis and acid phosphatase activity. The results suggested that, as in other marine invertebrates, neuroendocrine/immnne connections exist in sea cucumber A. japonicus. Mechanical stress can elicit a profound influence on sea cucumber neuroendocrine system. Neuroendocrine messengers act in turn to modulate the immunity fimctions. Therefore, these ef- fects should be considered for developing better husbandry procedures.展开更多
Thermoluminescence(TL)in marine carbonate has been proposed as a potential proxy for reconstruction of paleoceanography history,and has already been used in defining the Quaternary environment.However,its availability...Thermoluminescence(TL)in marine carbonate has been proposed as a potential proxy for reconstruction of paleoceanography history,and has already been used in defining the Quaternary environment.However,its availability in the geological time scale,such as Permian,is still on debate.The mass extinction event caused by drastic changes of global marine environment in Middle-Late Permian provides a typical example to testify the applicability of this proxy.Here we measured the natural thermoluminescence of the carbonate-dominating marine sediments collected from the strata through the Guadalupian-Lopingian mass extinction boundary(G/LB)in the Penglaitan Section in Laibin,Guangxi,China.Our results reveal that TL intensities of carbonate are much higher than those of siliceous rocks,which indicates that the carbonate is the main contributor to the TL.The variation of TL intensities are related with Mn and Fe contents in the carbonate lattices while high Mn and low Fe(e.g.,high Mn/Fe ratio)in carbonate will release stronger TL.Due to the better storage of carbonate lattices for original information of Mn and Fe in seawater,thermoluminescence of carbonate-dominating sediments/rocks could sensitively reflect marine environment and biological productivity in geological time scale.展开更多
Oceanic eddies may cause local sea surface temperature (SST), height, and salinity anomalies in remote sensing (RS) images. Remote sensed SST imagery has proven to be an effective technique in oceanic eddy detecti...Oceanic eddies may cause local sea surface temperature (SST), height, and salinity anomalies in remote sensing (RS) images. Remote sensed SST imagery has proven to be an effective technique in oceanic eddy detection, because of its high temporal and spatial resolution. Various techniques have been used to identify eddies from SST images. However, mainly owing to the strong morphological variation of oceanic eddies, there is arguably no uniquely correct eddy detection method. A scheme of algorithm based on quasi-contour tracing and clustering of eddy detection from SST dataset is presented. The method does not impose fixed restrictions or limitations during the course of "suspected" eddy detection, and any eddy-like structures can be detected as "suspected" eddies. Then, "true" eddies can be identified based on the combination of intensity and spatial/temporal scale criteria. This approach has been applied to detect eddies in the East China Sea by using Operational SST & Sea Ice Analysis (OSTIA) dataset. Experiments proved that oceanic eddies ranging in diameter from tens to hundreds of kilometers can be detected. Through investigation of the 2007-2011 OSTIA daily SST dataset from the Kuroshio region in the East China Sea, we found that the most active regions for oceanic eddies are those along the Kuroshio path, northeast of Taiwan Island, the Yangtze Estuary and the Ryukyu Islands. About 86% of the cyclonic eddies and 87% of the anticyclonic eddies have the size of 50-100 km in diameter. Only 25% of the anticyclonic eddy and 26% of the cyclonic eddy have the strength more than 0.4℃ in the sea surface layer.展开更多
Tropical rainfall is important for regional climate around the globe.In a warming climate forced by rising CO_(2),the tropical rainfall will increase over the equatorial Pacific where sea surface warming is locally en...Tropical rainfall is important for regional climate around the globe.In a warming climate forced by rising CO_(2),the tropical rainfall will increase over the equatorial Pacific where sea surface warming is locally enhanced.Here,we analyze an idealized CO_(2) removal experiment from the Carbon Dioxide Removal Model Intercomparison Project(CDRMIP)and show that the tropical rainfall change features a stronger pattern during CO_(2) ramp-down than ramp-up,even under the same global mean temperature increase,such as the 2℃ goal of the Paris Agreement.The tropical rainfall during CO_(2) ramp-down increases over the equatorial Pacific with a southward extension,and decreases over the Pacific intertropical convergence zone and South Pacific convergence zone.The asymmetric rainfall changes between CO_(2) ramp-down and ramp-up result from time-varying contributions of the fast and slow oceanic responses to CO_(2) forcing,defined as the responses to abrupt CO_(2) forcing in the first 10 years and thereafter,respectively,in the abrupt-4xCO_(2) experiment.The fast response follows the CO_(2) evolution,but the slow response does not peak until 60 years after the CO_(2) peak.The slow response features a stronger El Niño-like pattern,as the ocean dynamical thermostat effect is suppressed under stronger subsurface warming.The delayed and stronger slow response leads to stronger tropical rainfall changes during CO_(2) ramp-down.Our results indicate that returning the global mean temperature increase to below a certain goal,such as 2℃,by removing CO_(2),may fail to restore tropical convection distribution,with potentially devastating effects on climate worldwide.展开更多
文摘In this study,substantial satellitic remote sensing data and atmospheric observational data were used to study a snowfall caused by Bohai sea-effect snow cloud which occurred in Shandong Peninsula from 4 to 6,DEC 2008.The study results show that the snow cloud emerged in the strong northwesterly cold flow in the middle-lower troposphere,the southwest of northeast cold vortex,and cyclonic bending on the surface pressure-field.Although the snowstorm cloud was shallow convective,its cold center was quite strong,the average snowfall rate was 0.41 mm/h during the exuberant period,and the snowfall rate was distributed in strip.The upwelling longwave fluxes on the cloud top were not only related to the temperature,but also related to the ice water content of the cloud,when we study the clouds effect on the radiation,we should consider the rainfall(snowfall)strength of the cloud.
文摘yTwo exotic species, Sonneratia caseolaris (L.) Engl. and S. apetala B. Ham., were introduced to Futian Mangrove Forest Nature Reserve, Shenzhen Bay, in 1993 for afforestation. Winter cold caused frigid harm but did not appear to be an obstacle to the introduction. The cold tolerance of the parental and filial generation increased in several years. The two Sonneratia spp. could propagate by seeds and disperse in Shenzhen Bay. While the two species grew faster than indigenous species, at the same time they promoted the growth of indigenous species, but they could not replace indigenous mangrove species. Suitable habitat was more important than the distance from the source in the natural spreading for the two species. The niche of the two species did not overlap with the niche of indigenous species. The two species did not self regenerate, although they could disperse on localized area in Shenzhen Bay. Therefore, it was unlikely that the two species would pose ecological disaster.
文摘In some critics’view, experience would be an important element to be shown in one’sworks. The more experience an artist has got, the higher aesthetic he would express in hisworks. But, here’s six artists, Zhou Peide, Han Jvliang, Cheng Junjie, Tong Jianying, YingHaihai and Sun Huayi, can not be described in experience.Coming from the same art college in Shanghai, their vibrantworks would show a deeper aesthetic beyond their words...
基金supported by the National Natural Foundation of China(40940025)National Science Foundation of Tianjin(07ZCGYSF02400,09JCYBJC07400)+2 种基金Program of China"973"(2007CB411807)Open Fund of the Key Lab of Global Change and Marine-Atmospheric Chemistry,SOA(GCMAC0806)National Natural ScienceFoundation(41006002)
文摘The sea-level change is resulted from superposition of sun, moon and other planeries, and earth itself, biological process, atmosphere and oceanography, as well as artificial actions. As a result, the sea level change is really a sensitive integral variation value of many variations, or a combined function of coupling effects of various big systems. Therefore the above mentioned superposed action of different systems and the coupling effect of sun earth and biological aspects may be called as sun earth biological coupling effect system. Based on this hypothesis, the corresponding sun dynamic, air dynamic, water dynamic and earth dynamic conceptional models are established in order to research the multiple coupling effects and feedback machsnism between these big systems. In order to determine the relations, effectness and coherent relation of different variations, the quantity, analysis is conducted through collective variation and stage division. The quantity analysis indicates that the earths spindle rotation speed is the dynamic mechanism controlling the sea level change of fluctuation. The change rate of sea level in the world is +1.32 + 0.22 mm/a, while the sea level change rate in China is only+1.39 + 0.26 mm/a in average. If take the CO2 content as the climate marker, eight cold stages (periods) are grouped out since two hundreds years AC. The extreme cold of the eighth cold stage started approximately at 1850 years AC. and if the stage from the extreme cold to extreme warm is determined as long as 200 years, the present ongoing warm stage will end at about 2050 years, there after the temperature will begin to tower. If the stage between cold and warm extremes lasts for 250 years, then the temperature will become lower at about 2100 year. Until to that time, the sea-level is estimated to raise +7 - +11 + 3.5 cm again, and there after, the sea level will begin the new lowering trend. In the same time, the climate will enter into next new cold stage subsequently.
文摘Unmanned aerial vehicle has low cost, good flexibility, low risk and high efficiency. When it is applied in maritime supervision, such as maritime patrol, sea cruise, investigation and emergency response, maritime search and rescue, navigation channel measurement, monitoring and inspection of the oil and sewage spills from ships at sea, it can effectively expand the uses of monitoring sea areas, reduce the phenomenon of illegal use of sea, which can improve modernization construction in maritime supervision. According to the UAV (unmanned aerial vehicle) development and application, this paper explores the advantages of the UAV application in maritime adminstration, as well as the characteristics of maritime adminstration, put forward some countermeasures and suggestions of UAV applied in maritime adminstration.
基金Supported by the National Natural Science Foundation of China (Grant No. 50739004 and 11072154) Foundation of State Key Laboratory of Ocean Engineering of China (GKZD010059)+1 种基金 the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (2008007) The Lloyd's Register Educational Trust (The LRET)
文摘Offshore observation platforms are required to have great ability to resist waves when they are operating at sea. Investigation on the motion characteristics of the platforms in the sea can provide significant reference values during the platform design procedure. In this paper, a series of numerical simulation on the interaction of a triple-hulled offshore observation platform with different incident waves is carried out. All of the simulations are implemented utilizing our own solver naoe-FOAM-SJTU, which is based and developed on the open source tools of OpenFOAM. Duration curves of motion characteristics and loads acting on the platform are obtained, and a comparison between the results of the amplitude in different incident waves is presented. The results show that the solver is competent in the simulation of motion response of platforms in waves.
文摘The Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Variability (AMV) are the two dominant low-frequency modes in the climate system. This research focused on the response of these two modes under weak global warming. Observational data were derived from the Hadley Center Sea Ice and Sea Surface Temperature dataset (HadISST) and coupled model outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Changes in PDO and AMV were examined using four models (bcc-csml-1, CCSM4, IPSL-CM5A-LR, and MPI- ESM-LR) with long weak global warming scenarios (RCP2.6). These models captured the two low-frequency modes in both pre-industrial run and RCP2.6 run. Under weak global warming, the time scales of PDO and AMV significantly decreased while the amplitude only slightly decreased. Interestingly, the standard deviation of the North Pacific sea surface temperature anomaly (SSTA) decreased only in decadal time scale, and that of the North Atlantic SSTA decreased both in interannual and decadal time scales. The coupled system consists of a slow ocean component, which has a decadal time scale, and a fast atmospheric component, which is calculated by subtracting the decadal from the total. Results suggest that under global warming, PDO change is dominated by ocean dynamics, and AMV change is dominated by ocean dynamics and stochastic atmosphere forcing.
基金Supported by the National Natural Science Foundation of China(No.41271409)
文摘The oceanic front is a narrow zone in which water properties change abruptly within a short distance.The sea surface temperature(SST) front is an important type of oceanic front,which plays a significant role in many fields including fisheries,the military,and industry.Satellite-derived SST images have been used widely for front detection,although these data are susceptible to influence by many objective factors such as clouds,which can cause missing data and a reduction in front detection accuracy.However,front detection in a single SST image cannot fully reflect its temporal variability and therefore,the long-term mean frequency of occurrence of SST fronts and their gradients are often used to analyze the variations of fronts over time.In this paper,an SST front composite algorithm is proposed that exploits the frontal average gradient and frequency more effectively.Through experiments based on MODIS Terra and Aqua data,we verified that fronts could be distinguished better by using the proposed algorithm.Additionally through its use,we analyzed the monthly variations of fronts in the Bohai,Yellow,and East China Seas,based on Terra data from 2000 to 2013.
基金the support provided by the National Special Water Programs (Grant Nos. 2009ZX07210-009, 2015ZX07203-011, 2015ZX07204-007)the Department of Environmental Protection of Shandong Province (SDHBPJ-ZB-08)+2 种基金the ChinaScholarship Council (Grant No. 201306730020)the Chinese Natural Science Foundation (Grant No. 39560023)Queen Mary University of London
文摘The relationship and elevation is a hot issue between species richness in ecology and has been documented extensively. It is widely accepted that area size can significantly affect this relationship and thus mask the effects of other predictors. Despite the importance of the relationship between species richness and elevation while accounting for the area effect, it is insufficiently studied. Here, we evaluated area-corrected species richness patterns of all vascular plants as well as six vascular plant subgroups (seed plants, ferns, trees, shrubs, herbs and vines) along a tropical elevational gradient (Hainan Island, China). If assessed in equal-elevation bands, uncorrected species richness showed bell-shaped curves, while area-corrected species richness assessed in equal-area bands appeared to increase monotonically due to the small proportion of highlands on Hainan Island. The mid-domain effect (MDE) was significantly correlated with both uncorrected and area-corrected species richness. On Hainan Island, the use of equal-area elevational bands increased the explanatory power of MDE.These findings provide useful insights to adjust for the area effect and highlight the need to use equal- area bands along the elevational gradient.
基金Y. Wang was supported in part by the US National Science Foundation (NSF) under Grant Nos.CNS-0721666,CNS-0915331,and CNS-1050398Y. Liu was partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61074092+1 种基金by the Shandong Provincial Natural Science Foundation,China under Grant No.Q2008E01Z. Guo was partially supported by the NSFC under Grant Nos. 61170258 and 6093301
文摘The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.
基金Supported by the support by the NSFC (No 40676027)the Fund for Creative Research Groups of China (No 40721004)the 111 Project (No B08022)
文摘Diatom data of 192 surface sediment samples from the marginal seas in the western Pacific together with modern summer and winter sea surface temperature and salinity data were analyzed.The results of canonical correspondence analysis show that summer sea-surface salinity(SSS) is highly positively correlated with winter SSS and so is summer sea-surface temperature(SST) with winter SST.The correlations between SSSs and SSTs are less positively correlated,which may be due to interactions of regional current pattern and monsoon climate.The correlations between diatom species,sample sites and environmental variables concur with known diatom ecology and regional oceanographic characters.The results of forward selection of the environmental variables and associated Monte Carlo permutation tests of the statistical significance of each variable suggest that summer SSS and winter SST are the main environmental factors affecting the diatom distribution in the area and therefore preserved diatom data from down core could be used for reconstructions of summer SSS and winter SST in the region.
基金financially supported by the 863 High Technology Project of the Ministry of Science and Technology (No. 2012AA10A412-4)the Special Funds for the Basic B & D Program in the Central Non-profit Research Institutes (No. 2010-cb-03)+1 种基金Science and Technology Development Planning Project of Shandong Province (No. 2012GGA06021)Science and Technology Development Fund of Shinan district of Qingdao (No. 2011-5-023-QT)
文摘Grading procedure in routine sea cucumber hatchery production is thought to affect juvenile sea cucumber immunologi- cal response. The present study investigated the impact of a 3-min mechanical perturbation mimicking the grading procedure on neuroendocrine and immune parameters of the sea cucumber Apostichopusjaponicus. During the application of stress, concentrations of noradrenaline and dopamine in coelomic fluid increased significantly, indicating that the mechanical perturbation resulted in a transient state of stress in sea cucumbers. Coelomocytes concentration in coelomic fluid increased transiently after the beginning of stressing, and reached the maximum in 1 h. Whereas, coelomocytes phagocytosis at 3 min, superoxide anion production from 3 min to 0.5 h, acid phosphatase activity at 0.5 h, and phenoloxidase activity from 3 min to 0.5 h were all significantly down-regulated. All of the immune parameters recovered to baseline levels after the experiment was conducted for 8 h, and an immunostimulation occurred after the stress considering the phagocytosis and acid phosphatase activity. The results suggested that, as in other marine invertebrates, neuroendocrine/immnne connections exist in sea cucumber A. japonicus. Mechanical stress can elicit a profound influence on sea cucumber neuroendocrine system. Neuroendocrine messengers act in turn to modulate the immunity fimctions. Therefore, these ef- fects should be considered for developing better husbandry procedures.
基金supported by National Basic Research Program of China (Grant No.2011CB808800)National Fund for Geological Talents Training(Grant No. J0830520)
文摘Thermoluminescence(TL)in marine carbonate has been proposed as a potential proxy for reconstruction of paleoceanography history,and has already been used in defining the Quaternary environment.However,its availability in the geological time scale,such as Permian,is still on debate.The mass extinction event caused by drastic changes of global marine environment in Middle-Late Permian provides a typical example to testify the applicability of this proxy.Here we measured the natural thermoluminescence of the carbonate-dominating marine sediments collected from the strata through the Guadalupian-Lopingian mass extinction boundary(G/LB)in the Penglaitan Section in Laibin,Guangxi,China.Our results reveal that TL intensities of carbonate are much higher than those of siliceous rocks,which indicates that the carbonate is the main contributor to the TL.The variation of TL intensities are related with Mn and Fe contents in the carbonate lattices while high Mn and low Fe(e.g.,high Mn/Fe ratio)in carbonate will release stronger TL.Due to the better storage of carbonate lattices for original information of Mn and Fe in seawater,thermoluminescence of carbonate-dominating sediments/rocks could sensitively reflect marine environment and biological productivity in geological time scale.
文摘Oceanic eddies may cause local sea surface temperature (SST), height, and salinity anomalies in remote sensing (RS) images. Remote sensed SST imagery has proven to be an effective technique in oceanic eddy detection, because of its high temporal and spatial resolution. Various techniques have been used to identify eddies from SST images. However, mainly owing to the strong morphological variation of oceanic eddies, there is arguably no uniquely correct eddy detection method. A scheme of algorithm based on quasi-contour tracing and clustering of eddy detection from SST dataset is presented. The method does not impose fixed restrictions or limitations during the course of "suspected" eddy detection, and any eddy-like structures can be detected as "suspected" eddies. Then, "true" eddies can be identified based on the combination of intensity and spatial/temporal scale criteria. This approach has been applied to detect eddies in the East China Sea by using Operational SST & Sea Ice Analysis (OSTIA) dataset. Experiments proved that oceanic eddies ranging in diameter from tens to hundreds of kilometers can be detected. Through investigation of the 2007-2011 OSTIA daily SST dataset from the Kuroshio region in the East China Sea, we found that the most active regions for oceanic eddies are those along the Kuroshio path, northeast of Taiwan Island, the Yangtze Estuary and the Ryukyu Islands. About 86% of the cyclonic eddies and 87% of the anticyclonic eddies have the size of 50-100 km in diameter. Only 25% of the anticyclonic eddy and 26% of the cyclonic eddy have the strength more than 0.4℃ in the sea surface layer.
基金supported by the National Key Research&Development Program of China(2019YFA0606703)the National Natural Science Foundation of China(41975116 and 42105027)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202025)the China Postdoctoral Science Foundation(BX20200329 and 2020M680646)the Special Research Assistant Project of Chinese Academy of Sciences。
文摘Tropical rainfall is important for regional climate around the globe.In a warming climate forced by rising CO_(2),the tropical rainfall will increase over the equatorial Pacific where sea surface warming is locally enhanced.Here,we analyze an idealized CO_(2) removal experiment from the Carbon Dioxide Removal Model Intercomparison Project(CDRMIP)and show that the tropical rainfall change features a stronger pattern during CO_(2) ramp-down than ramp-up,even under the same global mean temperature increase,such as the 2℃ goal of the Paris Agreement.The tropical rainfall during CO_(2) ramp-down increases over the equatorial Pacific with a southward extension,and decreases over the Pacific intertropical convergence zone and South Pacific convergence zone.The asymmetric rainfall changes between CO_(2) ramp-down and ramp-up result from time-varying contributions of the fast and slow oceanic responses to CO_(2) forcing,defined as the responses to abrupt CO_(2) forcing in the first 10 years and thereafter,respectively,in the abrupt-4xCO_(2) experiment.The fast response follows the CO_(2) evolution,but the slow response does not peak until 60 years after the CO_(2) peak.The slow response features a stronger El Niño-like pattern,as the ocean dynamical thermostat effect is suppressed under stronger subsurface warming.The delayed and stronger slow response leads to stronger tropical rainfall changes during CO_(2) ramp-down.Our results indicate that returning the global mean temperature increase to below a certain goal,such as 2℃,by removing CO_(2),may fail to restore tropical convection distribution,with potentially devastating effects on climate worldwide.