To understand mercury (Hg) toxicity in marine fish, we measured Hg accumulation in juvenile Japanese flounder (Paralichthys olivaceus) and assessed the effects on growth and antioxidant responses. After Hg exposu...To understand mercury (Hg) toxicity in marine fish, we measured Hg accumulation in juvenile Japanese flounder (Paralichthys olivaceus) and assessed the effects on growth and antioxidant responses. After Hg exposure (control, 5, 40, and 160 gg/L Hg) for 28 d, fish growth was significantly reduced. The accumulation of Hg in fish was dose-dependent and tissue-specific, with the maximum accumulation in kidney and liver, followed by gills, hone, and muscle. Different antioxidants responded differently to Hg exposure to cope with the induction of lipid peroxidation (LPO), which was also tissue-specific and dose- dependent. As Hg concentration increased, superoxide dismutase (SOD) and catalase (CAT) activities increased significantly, whereas glutathione S-transferase (GST) activity and glutathione (GSH) levels decreased significantly in the gills. SOD and glutathione peroxidase (GPx) activities and the GSH level increased significantly in the liver. SOD activity and GSH levels increased significantly, but CAT activity decreased significantly with an increase in Hg concentration in the kidney. LPO was induced significantly by elevated Hg in the gills and kidney but was least affected in the liver. Therefore, oxidative stress biomarkers in gills were more sensitive than those in the liver and kidney to Hg exposure. Thus, the gills have potential as bioindicators for evaluating Hg toxicity in juvenile flounder.展开更多
基金Supported by the National Natural Science Foundation of China for Creative Research Groups (No. 41121064)the National High Technology Research and Development Program of China (863 Program) (No.2009AA09Z401)+1 种基金the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q07-02)the Public Interest Research Program in Marine Industry from the State Oceanic Administration of China (No. 200905019)
文摘To understand mercury (Hg) toxicity in marine fish, we measured Hg accumulation in juvenile Japanese flounder (Paralichthys olivaceus) and assessed the effects on growth and antioxidant responses. After Hg exposure (control, 5, 40, and 160 gg/L Hg) for 28 d, fish growth was significantly reduced. The accumulation of Hg in fish was dose-dependent and tissue-specific, with the maximum accumulation in kidney and liver, followed by gills, hone, and muscle. Different antioxidants responded differently to Hg exposure to cope with the induction of lipid peroxidation (LPO), which was also tissue-specific and dose- dependent. As Hg concentration increased, superoxide dismutase (SOD) and catalase (CAT) activities increased significantly, whereas glutathione S-transferase (GST) activity and glutathione (GSH) levels decreased significantly in the gills. SOD and glutathione peroxidase (GPx) activities and the GSH level increased significantly in the liver. SOD activity and GSH levels increased significantly, but CAT activity decreased significantly with an increase in Hg concentration in the kidney. LPO was induced significantly by elevated Hg in the gills and kidney but was least affected in the liver. Therefore, oxidative stress biomarkers in gills were more sensitive than those in the liver and kidney to Hg exposure. Thus, the gills have potential as bioindicators for evaluating Hg toxicity in juvenile flounder.