This study presents experimental and numerical investigations of simply supported steel reinforced concrete(RC)beams under fire.The temperature field of cross sections,the vertical deflection at mid-span,and specifica...This study presents experimental and numerical investigations of simply supported steel reinforced concrete(RC)beams under fire.The temperature field of cross sections,the vertical deflection at mid-span,and specifically the axial expansion displacement at beam-ends were measured during the fire tests.A novel finite element(FE)model of a RC beam under fire was developed,in which the water loss in the heat transfer analysis and the concrete transient strain in the mechanical analysis were considered.Based on the validated FE model proposed in this study,parametric studies were conducted to investigate the effects of the beam type,the protective layer thickness,and the load ratio on the thermal and mechanical behavior of simply supported RC beams.It was found that greater fire resistance and fire performance of girder beams in comparison to secondary beams contributed to the non-structural reinforcements,which effectively compensated for the reduced tensile capacities of structural reinforcements because of the degradation of the material properties.In addition,the history of normal stress distributions of concrete under fire can be divided into three phases:expansion,stress redistribution and plateau phases.展开更多
Disasters including natural and manmade make heavy losses in life and property each year. This subject can affect society, economy, and environment and can be a serious threat for development. In 10 years ago over 200...Disasters including natural and manmade make heavy losses in life and property each year. This subject can affect society, economy, and environment and can be a serious threat for development. In 10 years ago over 200 million people are have been effected both life and property. This figure is seven times more than losses in war. After the earthquake in Bam (a city in south Iran), tsunami in south-eastern of Asia, fire in Australia, and other disasters, the management of disaster has been considered more than before. They have tried to use all facilities and equipment for reduction of disaster damage. Over 80% of necessary data in disaster management are spatial data. Spatial data and advanced technologies have an important role in disaster management because Geographic Information System (GIS) can help in identifying disaster points. GIS combines geospatial data, and hardware, software that can analyze data to produce information. GIS mainly involves saving and analysis of data according to spatial and attribute data. GIS can combine and analyze spatial and non-spatial data .We have made an attempt to consider disasters management according to facilities and role of Geospatial Technology in control of disaster (especially earthquake).展开更多
Disaster prevention and mitigation for civil engineering structures is an important research field. It involves disaster field forming mechanism, disaster dynamic responses and collapse analysis, disaster prevention a...Disaster prevention and mitigation for civil engineering structures is an important research field. It involves disaster field forming mechanism, disaster dynamic responses and collapse analysis, disaster prevention and mitigation strategies, and so on. The recent researches and applications on disaster prevention and mitigation in civil engineering are commented, especially for the new researches published in Science China.展开更多
基金Project(51578548)supported by the National Natural Science Foundation of ChinaProject(2018JJ3202)supported by the Natural Science Foundation of Hunan Province,ChinaProject(17C0681)supported by the Educational Departmental Science Research of Hunan Province,China
文摘This study presents experimental and numerical investigations of simply supported steel reinforced concrete(RC)beams under fire.The temperature field of cross sections,the vertical deflection at mid-span,and specifically the axial expansion displacement at beam-ends were measured during the fire tests.A novel finite element(FE)model of a RC beam under fire was developed,in which the water loss in the heat transfer analysis and the concrete transient strain in the mechanical analysis were considered.Based on the validated FE model proposed in this study,parametric studies were conducted to investigate the effects of the beam type,the protective layer thickness,and the load ratio on the thermal and mechanical behavior of simply supported RC beams.It was found that greater fire resistance and fire performance of girder beams in comparison to secondary beams contributed to the non-structural reinforcements,which effectively compensated for the reduced tensile capacities of structural reinforcements because of the degradation of the material properties.In addition,the history of normal stress distributions of concrete under fire can be divided into three phases:expansion,stress redistribution and plateau phases.
文摘Disasters including natural and manmade make heavy losses in life and property each year. This subject can affect society, economy, and environment and can be a serious threat for development. In 10 years ago over 200 million people are have been effected both life and property. This figure is seven times more than losses in war. After the earthquake in Bam (a city in south Iran), tsunami in south-eastern of Asia, fire in Australia, and other disasters, the management of disaster has been considered more than before. They have tried to use all facilities and equipment for reduction of disaster damage. Over 80% of necessary data in disaster management are spatial data. Spatial data and advanced technologies have an important role in disaster management because Geographic Information System (GIS) can help in identifying disaster points. GIS combines geospatial data, and hardware, software that can analyze data to produce information. GIS mainly involves saving and analysis of data according to spatial and attribute data. GIS can combine and analyze spatial and non-spatial data .We have made an attempt to consider disasters management according to facilities and role of Geospatial Technology in control of disaster (especially earthquake).
文摘Disaster prevention and mitigation for civil engineering structures is an important research field. It involves disaster field forming mechanism, disaster dynamic responses and collapse analysis, disaster prevention and mitigation strategies, and so on. The recent researches and applications on disaster prevention and mitigation in civil engineering are commented, especially for the new researches published in Science China.