Focusing on the vibration of the roadbed and ground induced by high-speed train load, a three dimensional finite element model which includes the roadbed and horizontal layered site is established to study how the sit...Focusing on the vibration of the roadbed and ground induced by high-speed train load, a three dimensional finite element model which includes the roadbed and horizontal layered site is established to study how the site conditions, the load moving speed and the depth of the soil element influence the soil element stress response. Based on a track-subsoil analytical model in which the rail is simulated as an Euler-Bernoulli beam resting on Winkler foundation in the vertical plane, the reaction force between the sleeper and roadbed excited by a single axle is presented, and then that is exerted on relevant elements to simulate the moving load. The dynamic response in the roadbed and subsoil excited by a single axle moving load is computed based on the parallel computing platform of the ABAQUS finite element software, and the stress time-history, stress path and curves of the principal stress axes rotation of the soil element under the track are presented. The results show that: the soil element stress path is an apple-shaped curve in the horizontal shear stress τd versus the stress difference (σsh - σch )/2 coordinate system; the principal stress axes rotate 180° for the soil element under the load moving line during the load running, and the stress state changes from the pure shear to triaxial shear and then back to the pure shear again. The element dynamic stress increases as the moving load speed increases, which increases sharply when the load speed approaches the Rayleigh wave velocity of soil layer; the site conditions and the soil element depth affect the soil element stress path significantly.展开更多
The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment syste...The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment system,the average alignment rates are 95% for 3216 chip,88.5% for 2012 chip and 90.8% for 3818 chip.The MLCC alignment system can be accepted for practical use because the average manual alignment is just 80%.In other words,the developed MLCC alignment system has been upgraded to a great extent,compared with manual alignment.Based on the successfully developed MLCC alignment system,the optimal transfer conditions have been explored by using RSM.The simulations using ADAMS has been performed according to the cube model of CCD.By using MiniTAB,the model of response surface has been established based on the simulation results.The optimal conditions resulted from the response optimization tool of MiniTAB has been verified by being assigned to the prototype of MLCC alignment system.展开更多
A numerical model was established to predict and optimise the chemical cleaning process of Polyvinylidene Fluo- ride (PVDF) Ultrafiltration (UF) membranes with the results from the experiment that applied the Resp...A numerical model was established to predict and optimise the chemical cleaning process of Polyvinylidene Fluo- ride (PVDF) Ultrafiltration (UF) membranes with the results from the experiment that applied the Response Sur- face Method (RSM) and Central Composite Design (CCD). The factors considered in the experimental design were sodium hydroxide (NaOH) concentration, sodium bypochlorite concentration (NaCIO), citric acid concentration and cleaning duration, The interactions between the factors were investigated with the numerical model. Humic acid (20 mg· L-1) was used as the model foulant, and chemical enhanced backflush (CEB) was employed to sim- ulate the chemical cleaning process. The concentrations of sodium hydroxide, sodium hypochlorite, citric acid and cleaning duration tested during the experiments were in the range of 0.1%-0.3% 100-300 mg· L-1 1%-3% and 0.5-1.5 h, respectively. Among the variables, the sodium hypochlorite concentration and the cleaning dura- tion showed a positive relationship involving the increased efficiency of the chemical cleaning. The chemical cleaning efficiency was hardly improved with increasing concentrations of sodium hydroxide. However, the data was sharply decreased when at a low level of sodium hydroxide concentration. In total, 54 sets of cleaning schemes with 80% to 100K cleaning efficiency were observed with the R&M model after calibration.展开更多
Vanillin 1, 2-propylene glycol acetal was synthesized from vanillin and 1, 2-propylene glycol using H3PMo6W6O40·nH2O as catalyst, The factors influencing the synthesis were discussed and the better reaction condi...Vanillin 1, 2-propylene glycol acetal was synthesized from vanillin and 1, 2-propylene glycol using H3PMo6W6O40·nH2O as catalyst, The factors influencing the synthesis were discussed and the better reaction conditions were found as follows: The amount of vanillin was 3.8 g, the molar ratio of vanillin was 1, 2-propylene glycol 1.0 to 2.4, the amount of catalyst was 1.6% in proportion to the total reacting materials, the volume ofcyclohexane as the water-carrying agent 4 mL, the refluxing time was 2 h at 88-96℃ and thus the product yield reached over 87%. The results show that the catalyst's activity is high and the reaction time is short.展开更多
In order to consider the effects of elastohydrodynamic lubrication(EHL) on contact fatigue reliability of spur gear, an accurate and efficient method that combines with response surface method(RSM) and first order sec...In order to consider the effects of elastohydrodynamic lubrication(EHL) on contact fatigue reliability of spur gear, an accurate and efficient method that combines with response surface method(RSM) and first order second moment method(FOSM) was developed for estimating the contact fatigue reliability of spur gear under EHL. The mechanical model of contact stress analysis of spur gear under EHL was established, in which the oil film pressure was mapped into hertz contact zone. Considering the randomness of EHL, material properties and fatigue strength correction factors, the proposed method was used to analyze the contact fatigue reliability of spur gear under EHL. Compared with the results of 1.5×105 by traditional Monte-Carlo, the difference between the two failure probability results calculated by the above mentioned methods is 2.2×10-4, the relative error of the failure probability results is 26.8%, and time-consuming only accounts for 0.14% of the traditional Monte-Carlo method(MCM). Sensitivity analysis results are in very good agreement with practical cognition. Analysis results show that the proposed method is precise and efficient, and could correctly reflect the influence of EHL on contact fatigue reliability of spur gear.展开更多
Three types of the soil-structure interaction are used for structure analysis loaded by seismic effects. An example of the real RC building is used to demonstrate differences in the dynamic response results in the cal...Three types of the soil-structure interaction are used for structure analysis loaded by seismic effects. An example of the real RC building is used to demonstrate differences in the dynamic response results in the calculation of internal forces and displacements. Variant three options of the soil models were used as a building supporting structure. In the case of soil model A, the soil was modelled by using of equivalent stiffness values, stemming from the theory of a rigid circular disc on an elastic homogeneous half-space. Non-uniformly modelled vertical stiffness of the soil according to the Boussinesq model was used for model B. Both models A and B are characterised by the "averaged" soil model on the bases of spring constants. Model C was used for the soil better corresponding to its actual composition by the Winkler-Pasternak theory. Model C, where the actual layered soil is considered, is modelled more accurately than for the "averaged" soil of models A and B. The dynamic response of models operating with "averaged" values of rigid and soft soil layers is markedly shifted to the conservative smaller values of internal forces. The building response tbr model C in dynamic displacements is significantly higher than for the both models A and B.展开更多
The study of artificial slope stability has been a key item of geological engineering projects. Though more evaluation methods are available,result of stability evaluation simulation does not explain the actual proble...The study of artificial slope stability has been a key item of geological engineering projects. Though more evaluation methods are available,result of stability evaluation simulation does not explain the actual problem owing to the diversified geological engineering factors and complexity. The author made a detailed study based on surveys of large amount of geological engineering research on Donggang Power Plant slope project,discussed the comprehensive factors influencing the project,and gave analytical calculation and evaluation to the improved response surface of the slope project. The study result shows that the slope is stable,which can provide scientific basis for designing the slope.展开更多
Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics.Sensitivity is a key parameter of flexible pressure sensors.Whereas introducing surface microstruct...Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics.Sensitivity is a key parameter of flexible pressure sensors.Whereas introducing surface microstructures in a capacitive-type sensor can significantly improve its sensitivity,the signal becomes nonlinear and the pressure response range gets much narrower,significantly limiting the applications of flexible pressure sensors.Here,we designed a pressure sensor that utilizes a nanoscale iontronic interface of an ionic gel layer and a micropillared electrode,for highly linear capacitance-to-pressure response and high sensitivity over a wide pressure range.The micropillars undergo three stages of deformation upon loading:initial contact(0-6 k Pa)and structure buckling(6-12 k Pa)that exhibit a low and nonlinear response,as well as a post-buckling stage that has a high signal linearity with high sensitivity(33.16 k Pa-1)over a broad pressure range of 12-176 k Pa.The high linearity lies in the subtle balance between the structure compression and mechanical matching of the two materials at the gel-electrode interface.Our sensor has been applied in pulse detection,plantar pressure mapping,and grasp task of an artificial limb.This work provides a physical insight in achieving linear response through the design of appropriate microstructures and selection of materials with suitable modulus in flexible pressure sensors,which are potentially useful in intelligent robots and health monitoring.展开更多
The unfolding of neutron spectra from the pulse height distribution measured by a BC501A scintillation detector is accomplished by the application of artificial neural networks (ANN). A simple linear neural network wi...The unfolding of neutron spectra from the pulse height distribution measured by a BC501A scintillation detector is accomplished by the application of artificial neural networks (ANN). A simple linear neural network without biases and hidden layers is adopted. A set of monoenergetic detector response functions in the energy range from 0.25 MeV to 16 MeV with an energy interval of 0.25 MeV are generated by the Monte Carlo code O5S in the training phase of the unfolding process. The capability of ANN was demonstrated successfully using the Monte Carlo data itself and experimental data obtained from the Am-Be neutron source and D-T neutron source.展开更多
The widespread application of photodetectors has triggered an urgent need for high-sensitivity and polarization-dependent photodetection.In this field,the two-dimensional(2D)tungsten disulfide(WS_(2))exhibits intrigui...The widespread application of photodetectors has triggered an urgent need for high-sensitivity and polarization-dependent photodetection.In this field,the two-dimensional(2D)tungsten disulfide(WS_(2))exhibits intriguing optical and electronic properties,making it an attractive photosensitive material for optoelectronic applications.However,the lack of an effective built-in electric field and photoconductive gain mechanism in 2D WS_(2)impedes its application in high-performance photodetectors.Herein,we propose a hybrid heterostructure photodetector that contains 1D Te and 2D WS_(2).In this device,1D Te induces in-plane strain in 2D WS_(2),which regulates the electronic structures of local WS_(2)and gives rise to type-Ⅱ band alignment in the horizontal direction.Moreover,the vertical heterojunction built of 2D WS_(2)and 1D Te introduces a high photoconductive gain.Benefiting from these two effects,the transfer of photogenerated carriers is optimized,and the proposed photodetector exhibits high sensitivity(photoresponsivity of ~27.7 A W^(-1),detectivity of 9.5×10^(12)Jones,and short rise/decay time of 19.3/17.6 ms).In addition,anisotropic photodetection characteristics with a dichroic ratio up to 2.1 are achieved.This hybrid 1D/2D heterostructure overcomes the inherent limitations of each material and realizes novel properties,opening up a new avenue towards constructing multifunctional optoelectronic devices.展开更多
文摘Focusing on the vibration of the roadbed and ground induced by high-speed train load, a three dimensional finite element model which includes the roadbed and horizontal layered site is established to study how the site conditions, the load moving speed and the depth of the soil element influence the soil element stress response. Based on a track-subsoil analytical model in which the rail is simulated as an Euler-Bernoulli beam resting on Winkler foundation in the vertical plane, the reaction force between the sleeper and roadbed excited by a single axle is presented, and then that is exerted on relevant elements to simulate the moving load. The dynamic response in the roadbed and subsoil excited by a single axle moving load is computed based on the parallel computing platform of the ABAQUS finite element software, and the stress time-history, stress path and curves of the principal stress axes rotation of the soil element under the track are presented. The results show that: the soil element stress path is an apple-shaped curve in the horizontal shear stress τd versus the stress difference (σsh - σch )/2 coordinate system; the principal stress axes rotate 180° for the soil element under the load moving line during the load running, and the stress state changes from the pure shear to triaxial shear and then back to the pure shear again. The element dynamic stress increases as the moving load speed increases, which increases sharply when the load speed approaches the Rayleigh wave velocity of soil layer; the site conditions and the soil element depth affect the soil element stress path significantly.
基金supported by the Second Stage of Brain Korea 21 Projectssupported (in part) by the Solomon Mechanics Inc
文摘The multi-layer ceramic capacitor (MLCC) alignment system aims at the inter-process automation between the first and the second plastic processes.As a result of testing performance verification of MLCC alignment system,the average alignment rates are 95% for 3216 chip,88.5% for 2012 chip and 90.8% for 3818 chip.The MLCC alignment system can be accepted for practical use because the average manual alignment is just 80%.In other words,the developed MLCC alignment system has been upgraded to a great extent,compared with manual alignment.Based on the successfully developed MLCC alignment system,the optimal transfer conditions have been explored by using RSM.The simulations using ADAMS has been performed according to the cube model of CCD.By using MiniTAB,the model of response surface has been established based on the simulation results.The optimal conditions resulted from the response optimization tool of MiniTAB has been verified by being assigned to the prototype of MLCC alignment system.
基金Supported by State Key Laboratory of Urban Water Resource and Environment(2016DX01)the Fundamental Research Funds for the Central University(NSRIF.2014096)Science and Technology Planning Project of Chancheng District(2013A1044)
文摘A numerical model was established to predict and optimise the chemical cleaning process of Polyvinylidene Fluo- ride (PVDF) Ultrafiltration (UF) membranes with the results from the experiment that applied the Response Sur- face Method (RSM) and Central Composite Design (CCD). The factors considered in the experimental design were sodium hydroxide (NaOH) concentration, sodium bypochlorite concentration (NaCIO), citric acid concentration and cleaning duration, The interactions between the factors were investigated with the numerical model. Humic acid (20 mg· L-1) was used as the model foulant, and chemical enhanced backflush (CEB) was employed to sim- ulate the chemical cleaning process. The concentrations of sodium hydroxide, sodium hypochlorite, citric acid and cleaning duration tested during the experiments were in the range of 0.1%-0.3% 100-300 mg· L-1 1%-3% and 0.5-1.5 h, respectively. Among the variables, the sodium hypochlorite concentration and the cleaning dura- tion showed a positive relationship involving the increased efficiency of the chemical cleaning. The chemical cleaning efficiency was hardly improved with increasing concentrations of sodium hydroxide. However, the data was sharply decreased when at a low level of sodium hydroxide concentration. In total, 54 sets of cleaning schemes with 80% to 100K cleaning efficiency were observed with the R&M model after calibration.
文摘Vanillin 1, 2-propylene glycol acetal was synthesized from vanillin and 1, 2-propylene glycol using H3PMo6W6O40·nH2O as catalyst, The factors influencing the synthesis were discussed and the better reaction conditions were found as follows: The amount of vanillin was 3.8 g, the molar ratio of vanillin was 1, 2-propylene glycol 1.0 to 2.4, the amount of catalyst was 1.6% in proportion to the total reacting materials, the volume ofcyclohexane as the water-carrying agent 4 mL, the refluxing time was 2 h at 88-96℃ and thus the product yield reached over 87%. The results show that the catalyst's activity is high and the reaction time is short.
基金Project(CX2014B060)supported by Hunan Provincial Innovation for Postgraduate,ChinaProject(8130208)supported by General Armament Pre-research Foundation,China
文摘In order to consider the effects of elastohydrodynamic lubrication(EHL) on contact fatigue reliability of spur gear, an accurate and efficient method that combines with response surface method(RSM) and first order second moment method(FOSM) was developed for estimating the contact fatigue reliability of spur gear under EHL. The mechanical model of contact stress analysis of spur gear under EHL was established, in which the oil film pressure was mapped into hertz contact zone. Considering the randomness of EHL, material properties and fatigue strength correction factors, the proposed method was used to analyze the contact fatigue reliability of spur gear under EHL. Compared with the results of 1.5×105 by traditional Monte-Carlo, the difference between the two failure probability results calculated by the above mentioned methods is 2.2×10-4, the relative error of the failure probability results is 26.8%, and time-consuming only accounts for 0.14% of the traditional Monte-Carlo method(MCM). Sensitivity analysis results are in very good agreement with practical cognition. Analysis results show that the proposed method is precise and efficient, and could correctly reflect the influence of EHL on contact fatigue reliability of spur gear.
文摘Three types of the soil-structure interaction are used for structure analysis loaded by seismic effects. An example of the real RC building is used to demonstrate differences in the dynamic response results in the calculation of internal forces and displacements. Variant three options of the soil models were used as a building supporting structure. In the case of soil model A, the soil was modelled by using of equivalent stiffness values, stemming from the theory of a rigid circular disc on an elastic homogeneous half-space. Non-uniformly modelled vertical stiffness of the soil according to the Boussinesq model was used for model B. Both models A and B are characterised by the "averaged" soil model on the bases of spring constants. Model C was used for the soil better corresponding to its actual composition by the Winkler-Pasternak theory. Model C, where the actual layered soil is considered, is modelled more accurately than for the "averaged" soil of models A and B. The dynamic response of models operating with "averaged" values of rigid and soft soil layers is markedly shifted to the conservative smaller values of internal forces. The building response tbr model C in dynamic displacements is significantly higher than for the both models A and B.
文摘The study of artificial slope stability has been a key item of geological engineering projects. Though more evaluation methods are available,result of stability evaluation simulation does not explain the actual problem owing to the diversified geological engineering factors and complexity. The author made a detailed study based on surveys of large amount of geological engineering research on Donggang Power Plant slope project,discussed the comprehensive factors influencing the project,and gave analytical calculation and evaluation to the improved response surface of the slope project. The study result shows that the slope is stable,which can provide scientific basis for designing the slope.
基金supported by the Science Technology and Innovation Committee of Shenzhen Municipality(JCYJ20170817111714314)the National Natural Science Foundation of China(52073138 and 51771089)+2 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06G587)the Shenzhen Sci-Tech Fund(KYTDPT20181011104007)the Tencent Robotics X Lab Rhino-Bird Focused Research Program(JR201984)。
文摘Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics.Sensitivity is a key parameter of flexible pressure sensors.Whereas introducing surface microstructures in a capacitive-type sensor can significantly improve its sensitivity,the signal becomes nonlinear and the pressure response range gets much narrower,significantly limiting the applications of flexible pressure sensors.Here,we designed a pressure sensor that utilizes a nanoscale iontronic interface of an ionic gel layer and a micropillared electrode,for highly linear capacitance-to-pressure response and high sensitivity over a wide pressure range.The micropillars undergo three stages of deformation upon loading:initial contact(0-6 k Pa)and structure buckling(6-12 k Pa)that exhibit a low and nonlinear response,as well as a post-buckling stage that has a high signal linearity with high sensitivity(33.16 k Pa-1)over a broad pressure range of 12-176 k Pa.The high linearity lies in the subtle balance between the structure compression and mechanical matching of the two materials at the gel-electrode interface.Our sensor has been applied in pulse detection,plantar pressure mapping,and grasp task of an artificial limb.This work provides a physical insight in achieving linear response through the design of appropriate microstructures and selection of materials with suitable modulus in flexible pressure sensors,which are potentially useful in intelligent robots and health monitoring.
基金supported by the National Magnetic Confinement Fusion Science Program (Grant No. 2010GB111002)
文摘The unfolding of neutron spectra from the pulse height distribution measured by a BC501A scintillation detector is accomplished by the application of artificial neural networks (ANN). A simple linear neural network without biases and hidden layers is adopted. A set of monoenergetic detector response functions in the energy range from 0.25 MeV to 16 MeV with an energy interval of 0.25 MeV are generated by the Monte Carlo code O5S in the training phase of the unfolding process. The capability of ANN was demonstrated successfully using the Monte Carlo data itself and experimental data obtained from the Am-Be neutron source and D-T neutron source.
基金supported by the National Natural Science Foundation of China(61805044,62004071 and 11674310)the Key Platforms and Research Projects of Department of Education of Guangdong Province(2018KTSCX050)+1 种基金Guangdong Provincial Key Laboratory of Information Photonics Technology(2020B121201011)"The Pearl River Talent Recruitment Program"(2019ZT08X639)。
文摘The widespread application of photodetectors has triggered an urgent need for high-sensitivity and polarization-dependent photodetection.In this field,the two-dimensional(2D)tungsten disulfide(WS_(2))exhibits intriguing optical and electronic properties,making it an attractive photosensitive material for optoelectronic applications.However,the lack of an effective built-in electric field and photoconductive gain mechanism in 2D WS_(2)impedes its application in high-performance photodetectors.Herein,we propose a hybrid heterostructure photodetector that contains 1D Te and 2D WS_(2).In this device,1D Te induces in-plane strain in 2D WS_(2),which regulates the electronic structures of local WS_(2)and gives rise to type-Ⅱ band alignment in the horizontal direction.Moreover,the vertical heterojunction built of 2D WS_(2)and 1D Te introduces a high photoconductive gain.Benefiting from these two effects,the transfer of photogenerated carriers is optimized,and the proposed photodetector exhibits high sensitivity(photoresponsivity of ~27.7 A W^(-1),detectivity of 9.5×10^(12)Jones,and short rise/decay time of 19.3/17.6 ms).In addition,anisotropic photodetection characteristics with a dichroic ratio up to 2.1 are achieved.This hybrid 1D/2D heterostructure overcomes the inherent limitations of each material and realizes novel properties,opening up a new avenue towards constructing multifunctional optoelectronic devices.