This paper briefly introduces the application of new materials in sports and effect on sports performance, points out that development of competitive sports in the process, must pay attention to the development and ut...This paper briefly introduces the application of new materials in sports and effect on sports performance, points out that development of competitive sports in the process, must pay attention to the development and utilization of new materials, development.展开更多
Permanent magnets with high energy products are widely used in a variety of electromagnetic devices. Such devices can be found in marine, aerospace, and robotic applications which require the minimization of weight an...Permanent magnets with high energy products are widely used in a variety of electromagnetic devices. Such devices can be found in marine, aerospace, and robotic applications which require the minimization of weight and volume of the electromagnetic device. During the magnetizing process, the magnet may not be perfectly magnetized. Therefore, it needs to be demagnetized. Because of high coercivity of some permanent magnets, the demagnetization process requires the intense magnetic fields in close proximity with the magnetic material. The fields must be produced for a short period of time (millisecond range) and they also must be bidirectional in order to overcome the coercivity of magnetic material. Different parameters have been known to affect the demagnetizer operation such as the core shape, core material, turn number, cross section of air gap, magnet type and so on. The amplitude and waveform of the fixture current is obtained from PSPICE simulations and also from experimental measurement. A 2D finite element analysis is developed to simulate the magnetic fields and the mechanical forces. In this paper, the main parameters affecting the optimal design of the demagnetizer are discussed. Simulation results show that the core structure, air gap width, and turn numbers are the most important parameters when designing such a device.展开更多
Dielectric elastomer actuators(DEAs) have attracted much interest over the past decades due to the inherent flexibility, large strain, high efficiency, high energy density, and fast response of the material, which are...Dielectric elastomer actuators(DEAs) have attracted much interest over the past decades due to the inherent flexibility, large strain, high efficiency, high energy density, and fast response of the material, which are known as one of the most promising candidates for artificial muscle. In this paper, we first introduce the actuation principle and electromechanical modeling approaches of dielectric elastomers(DEs). Then, the performance of different DEs material and existing compliant electrodes that are widely utilized for DEAs are presented. We also highlight the compatibility of DEs, which is suitable for a variety of actuator designs and applications. Lastly, we summarize the challenges and future development in terms of electromechanical modeling, improvement of materials including compliant electrodes and dielectric elastomer, designs and applications of novel dielectric elastomer actuators.展开更多
Metal organic frameworks(MOFs) are considered as very promising candidates to build electrodes for electrochemical energy storage devices such as lithium ion batteries, fuel cells and supercapacitors, due to their d...Metal organic frameworks(MOFs) are considered as very promising candidates to build electrodes for electrochemical energy storage devices such as lithium ion batteries, fuel cells and supercapacitors, due to their diverse structure, adjustable aperture, large specific surface area and abundant active sites. Supercapacitor has been widely investigated in the past decades. Of critical importance in these devices is the electrode active materials, and this application has been intensively studied with the development of novel nanomaterials. In this review we summarize recent reports on MO Fs as electrode materials for super capacitors. Specifically,the synthesis of MOF materials for super capacitor electrodes and their performance in electrochemical energy storage are discussed. We aim to include supercapacitor electrode materials related to MOFs, such as carbon, metal and composite materials. It is proposed that MOFs play an important role in the development of a new generation of supercapacitor electrode materials. Finally, we discuss the current challenges in the field of supercapacitors, with a view towards how to address these challenges with the future development of MOFs and their derivatives.展开更多
Electrochromism refers to the persistent and reversible change of optical properties by an applied voltage pulse.Electrochromic(EC)devices have been extensively studied because of their commercial applications in smar...Electrochromism refers to the persistent and reversible change of optical properties by an applied voltage pulse.Electrochromic(EC)devices have been extensively studied because of their commercial applications in smart windows of green buildings,display devices and thermal control of equipments.In this review,a basic EC device design is presented based on useful oxides and solid-state electrolytes.We focus on the state-of-the-art research activities related to the structures of tungsten oxide(WO_3)and nickel oxide(NiO),summarizing the strategies to improve their EC performances and further applications of devices.展开更多
Ionic liquids (ILs) have been generally described as molten salts which are composed of asymmetric cations and anions. They exist in liquid state below 100 ℃. Both ILs and their composite materials have been widely...Ionic liquids (ILs) have been generally described as molten salts which are composed of asymmetric cations and anions. They exist in liquid state below 100 ℃. Both ILs and their composite materials have been widely used in various fields. Attributed to the outstanding properties including the thermal and chemical stabilities, the negligible volatility, the high ionic conductivity, the wide electrochemical window, and the easy design in the construction, ILs have been applied in electrochemical applications including the electrocatalysis, the electrosynthesis, the electrodeposition, the electrochamical devices and sensors. In addition to the application in electrochemical sensors, ILs have also been used in biosensors because of their biocompatibiciy. Here, we review the recent devel- opments for the applicaitons of ILs in electrochemical sensors and biosensors, including the corresponding properties of ILs suitable for electrochemical sensors. Electrochemical biosensors constructed by numorous composites are the emphasis in the review.展开更多
Materials science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at ...Materials science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. It incorporates elements of applied physics and chemistry. With significant media attention focused on nanoscience and nanotechnology in recent years, materials science has been propelled to the forefront at many universities. Materials science encompasses various classes of materials, including electronic materials, functional ceramics, magnesium, material and processes for flat-panel displays, eco/environmental materials, sustainable energy materials, transportation materials, electronic packaging materials, etc.展开更多
The two-dimensional(2D) perovskite(including pure-2D and quasi-2D) is formed by introducing large-group ammonium halides into conventional bulk perovskite. In the past twenty years, 2D perovskite materials were wi...The two-dimensional(2D) perovskite(including pure-2D and quasi-2D) is formed by introducing large-group ammonium halides into conventional bulk perovskite. In the past twenty years, 2D perovskite materials were widely developed with the enriched species and advanced physicalknowledge in material characteristics as well as optoelectronic device applications. To review achievments in 2D perovskite,the fundamental mechanism and properties of 2D perovskite are introduced to offer insight into device performance.Moreover, the preparation methods of 2D perovskite films are summarized and compared. The latest successful applications of the 2D perovskite in the solar cells and light-emitting diodes fields, especially the advanced stability of 2D perovskite solar cells(PeSCs) and the efficient 2D perovskite lightemitting diodes(PeLEDs), are also achieved. Furthermore, the challenges and outlook of 2D perovskite materials are proposed.展开更多
文摘This paper briefly introduces the application of new materials in sports and effect on sports performance, points out that development of competitive sports in the process, must pay attention to the development and utilization of new materials, development.
文摘Permanent magnets with high energy products are widely used in a variety of electromagnetic devices. Such devices can be found in marine, aerospace, and robotic applications which require the minimization of weight and volume of the electromagnetic device. During the magnetizing process, the magnet may not be perfectly magnetized. Therefore, it needs to be demagnetized. Because of high coercivity of some permanent magnets, the demagnetization process requires the intense magnetic fields in close proximity with the magnetic material. The fields must be produced for a short period of time (millisecond range) and they also must be bidirectional in order to overcome the coercivity of magnetic material. Different parameters have been known to affect the demagnetizer operation such as the core shape, core material, turn number, cross section of air gap, magnet type and so on. The amplitude and waveform of the fixture current is obtained from PSPICE simulations and also from experimental measurement. A 2D finite element analysis is developed to simulate the magnetic fields and the mechanical forces. In this paper, the main parameters affecting the optimal design of the demagnetizer are discussed. Simulation results show that the core structure, air gap width, and turn numbers are the most important parameters when designing such a device.
基金supported by the National Natural Science Foundation of China(Grant Nos.51575187&91223201)Science and Technology Program of Guangzhou(Grant No.2014Y2-00217)+3 种基金Science and Technology Major Project of Huangpu District of Guangzhou(Grant No.20150000661)Research Project of State Key Laboratory of Mechanical System and Vibration(Grant No.MSV201405)the Fundamental Research Funds for the Central University(Grant No.2015ZZ007)the Natural Science Foundation of Guangdong Province(Grant No.S2013030013355)
文摘Dielectric elastomer actuators(DEAs) have attracted much interest over the past decades due to the inherent flexibility, large strain, high efficiency, high energy density, and fast response of the material, which are known as one of the most promising candidates for artificial muscle. In this paper, we first introduce the actuation principle and electromechanical modeling approaches of dielectric elastomers(DEs). Then, the performance of different DEs material and existing compliant electrodes that are widely utilized for DEAs are presented. We also highlight the compatibility of DEs, which is suitable for a variety of actuator designs and applications. Lastly, we summarize the challenges and future development in terms of electromechanical modeling, improvement of materials including compliant electrodes and dielectric elastomer, designs and applications of novel dielectric elastomer actuators.
基金supported by the Fundamental Research Funds for Central Universities' through Beihang Universitythe Queensland Government through the Q-CAS Collaborative Science Fund 2016 "Graphene-Based Thin Film Supercapacitors"
文摘Metal organic frameworks(MOFs) are considered as very promising candidates to build electrodes for electrochemical energy storage devices such as lithium ion batteries, fuel cells and supercapacitors, due to their diverse structure, adjustable aperture, large specific surface area and abundant active sites. Supercapacitor has been widely investigated in the past decades. Of critical importance in these devices is the electrode active materials, and this application has been intensively studied with the development of novel nanomaterials. In this review we summarize recent reports on MO Fs as electrode materials for super capacitors. Specifically,the synthesis of MOF materials for super capacitor electrodes and their performance in electrochemical energy storage are discussed. We aim to include supercapacitor electrode materials related to MOFs, such as carbon, metal and composite materials. It is proposed that MOFs play an important role in the development of a new generation of supercapacitor electrode materials. Finally, we discuss the current challenges in the field of supercapacitors, with a view towards how to address these challenges with the future development of MOFs and their derivatives.
基金Program for Innovative Research Team in University of Ministry of Education of China (IRT13037)
文摘Electrochromism refers to the persistent and reversible change of optical properties by an applied voltage pulse.Electrochromic(EC)devices have been extensively studied because of their commercial applications in smart windows of green buildings,display devices and thermal control of equipments.In this review,a basic EC device design is presented based on useful oxides and solid-state electrolytes.We focus on the state-of-the-art research activities related to the structures of tungsten oxide(WO_3)and nickel oxide(NiO),summarizing the strategies to improve their EC performances and further applications of devices.
基金supported by the National Natural Science Foundation of China(21420102006,21273134)
文摘Ionic liquids (ILs) have been generally described as molten salts which are composed of asymmetric cations and anions. They exist in liquid state below 100 ℃. Both ILs and their composite materials have been widely used in various fields. Attributed to the outstanding properties including the thermal and chemical stabilities, the negligible volatility, the high ionic conductivity, the wide electrochemical window, and the easy design in the construction, ILs have been applied in electrochemical applications including the electrocatalysis, the electrosynthesis, the electrodeposition, the electrochamical devices and sensors. In addition to the application in electrochemical sensors, ILs have also been used in biosensors because of their biocompatibiciy. Here, we review the recent devel- opments for the applicaitons of ILs in electrochemical sensors and biosensors, including the corresponding properties of ILs suitable for electrochemical sensors. Electrochemical biosensors constructed by numorous composites are the emphasis in the review.
文摘Materials science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. It incorporates elements of applied physics and chemistry. With significant media attention focused on nanoscience and nanotechnology in recent years, materials science has been propelled to the forefront at many universities. Materials science encompasses various classes of materials, including electronic materials, functional ceramics, magnesium, material and processes for flat-panel displays, eco/environmental materials, sustainable energy materials, transportation materials, electronic packaging materials, etc.
基金supported by the National Key Research and Development Program of China (2016YFA0202401)the 111 Project (B16016)+1 种基金the National Natural Science Foundation of China (51572080, 51702096 and U1705256)the Fundamental Research Funds for the Central Universities (2017XS080)
文摘The two-dimensional(2D) perovskite(including pure-2D and quasi-2D) is formed by introducing large-group ammonium halides into conventional bulk perovskite. In the past twenty years, 2D perovskite materials were widely developed with the enriched species and advanced physicalknowledge in material characteristics as well as optoelectronic device applications. To review achievments in 2D perovskite,the fundamental mechanism and properties of 2D perovskite are introduced to offer insight into device performance.Moreover, the preparation methods of 2D perovskite films are summarized and compared. The latest successful applications of the 2D perovskite in the solar cells and light-emitting diodes fields, especially the advanced stability of 2D perovskite solar cells(PeSCs) and the efficient 2D perovskite lightemitting diodes(PeLEDs), are also achieved. Furthermore, the challenges and outlook of 2D perovskite materials are proposed.