A neural network is applied to high-quality 3-D seismic data during micro-seismic facies analysis to perform the waveform analysis and training on single reflection events. Modeled seismic channels are established and...A neural network is applied to high-quality 3-D seismic data during micro-seismic facies analysis to perform the waveform analysis and training on single reflection events. Modeled seismic channels are established and the real seismic channels are classified. Thus, a distribution of micro-seismic facies having a high precision over a fiat surface was acquired. This method applied to existing geological data allows the distribution of areas rich in coal bed methane to be clearly defined. A distribution map of the micro-seismic facies in the research area is shown. The data accord well with measured methane con- tents, indicating that the analysis using micro-seismic facies is reliable and effective. This method could be applied to coal bed methane exploration and is of great importance to future exploration work and to an increase in the drilling success rate.展开更多
Scanning near-field acoustic microscope (SNAM) combines the ultrasonic detection technology with scanning near-field microscopy. The main characteristic of such microscope is that the acoustic wave is produced or de...Scanning near-field acoustic microscope (SNAM) combines the ultrasonic detection technology with scanning near-field microscopy. The main characteristic of such microscope is that the acoustic wave is produced or detected in near-field area whether ultrasonic transducer acts as generator or detector. The resolution of SNAM can reach to nanometer scale. First, two typical SNAMs, scanning electron acoustic Inicroscope and scanning probe acoustic microscope, will be introduced in this paper. The working principle of our homemade SNAM based on a commercial scanning probe microscope will be reported, together with some recent results from this homemade SNAM.展开更多
基金supported financially by the National Key Project(No. 2008ZX05035-005-003)the National Basic Research Program of China (No. 2009CB219603)
文摘A neural network is applied to high-quality 3-D seismic data during micro-seismic facies analysis to perform the waveform analysis and training on single reflection events. Modeled seismic channels are established and the real seismic channels are classified. Thus, a distribution of micro-seismic facies having a high precision over a fiat surface was acquired. This method applied to existing geological data allows the distribution of areas rich in coal bed methane to be clearly defined. A distribution map of the micro-seismic facies in the research area is shown. The data accord well with measured methane con- tents, indicating that the analysis using micro-seismic facies is reliable and effective. This method could be applied to coal bed methane exploration and is of great importance to future exploration work and to an increase in the drilling success rate.
基金supported by the National Natural Science Foundation of China (Grant Nos.50971011 and 10874006)Beijing Natural Science Foundation (Grant No.1102025)Research Fund for the Doctoral Program of Higher Education of China (Grant No.20091102110038)
文摘Scanning near-field acoustic microscope (SNAM) combines the ultrasonic detection technology with scanning near-field microscopy. The main characteristic of such microscope is that the acoustic wave is produced or detected in near-field area whether ultrasonic transducer acts as generator or detector. The resolution of SNAM can reach to nanometer scale. First, two typical SNAMs, scanning electron acoustic Inicroscope and scanning probe acoustic microscope, will be introduced in this paper. The working principle of our homemade SNAM based on a commercial scanning probe microscope will be reported, together with some recent results from this homemade SNAM.