The paper presents a very simple method, which in two stages enables to calculate the plane statically indeterminate truss by the application of one of methods used for the force calculation in members of the statical...The paper presents a very simple method, which in two stages enables to calculate the plane statically indeterminate truss by the application of one of methods used for the force calculation in members of the statically determinate trusses. The results are obtained in a very simple and quick way. Although the force values are approximated but they are relatively very close to those, which are determined by the exact methods. The point of the two-stage calculation process of the statically indeterminate trusses is to determine schemes of two independent and simple statically determined trusses, which after superposition of their patterns will give in the result a pattern of the initial, more complex form of the statically indeterminate truss. Each of the simple truss has to be of the same clear span and the load forces have to be of the half values and they have to be applied to the same nodes like in truss of the initial structural configuration.展开更多
This paper is to establish a nitrogen and phosphorus nutrients cycle-based numerical model of ecological dynamics for Xiamen Bay on the basis of the existing three-dimensional barocline hydrodynamic model. The calcula...This paper is to establish a nitrogen and phosphorus nutrients cycle-based numerical model of ecological dynamics for Xiamen Bay on the basis of the existing three-dimensional barocline hydrodynamic model. The calculation results show that the estuarine district of Jiulongjiang estuary has the highest inorganic nitrogen concentration followed by the West Harbor, which demonstrates that Jiulongjiang River is the main input source of inorganic nitrogen in Xiamen Bay. The West Harbor has relatively high concentration of nutrients caused by the huge land pollution emission and its own poor water exchange capacity; while the distribution rules of phytoplankton biomass correspond with those of phosphates, demonstrating Xiamen Bay's phytoplankton controlled by phosphorus; the haloplankton biomass differs slightly, presenting the gradual reduction from the interior part to the exterior part of the bay.展开更多
A feasible method to improve the reliability and processing efficiency of large vibrating screen via the application of an elastic screen surface with multiple attached substructures (ESSMAS) was proposed. In the ES...A feasible method to improve the reliability and processing efficiency of large vibrating screen via the application of an elastic screen surface with multiple attached substructures (ESSMAS) was proposed. In the ESSMAS, every screen rod, with ends embedded into elastomer, is coupled to the main screen structure in a relatively flexible manner. The theoretical analysis was conducted, which consists of establishing dynamic model promoted from the fuzzy structure theory as well as calculating for the equivalent stiffness of each attached structure. According to the numerical simulation using the NEWMARK-fl integration method, this assembling pattern significantly leads to the screen surface/rod having larger vibration intensity than that of the corresponding position on screen structure, which specifically, with an averaged acceleration amplitude increasing ratio of 11.37% in theoretical analysis and 20.27% in experimental test. The experimental results, within a tolerant error, also confirm the established model and demonstrate the feasibility of ESSMAS.展开更多
The problem of scattering of SH-wave by a circular cavity and an arbitrary beeline crack in right-angle plane was investigated using the methods of Green's function,complex variables and muti-polar coordinates.Fir...The problem of scattering of SH-wave by a circular cavity and an arbitrary beeline crack in right-angle plane was investigated using the methods of Green's function,complex variables and muti-polar coordinates.Firstly,we constructed a suitable Green's function,which is an essential solution to the displacement field for the elastic right-angle plane possessing a circular cavity while bearing out-of-plane harmonic line source load at arbitrary point.Secondly,based on the method of crack-division,integration for solution was established,then expressions of displacement and stress were obtained while crack and circular cavities were both in existence.Finally,the dynamic stress concentration factor around the circular cavity and the dynamic stress intensity factor at crack tip were discussed to the cases of different parameters in numerical examples.Calculation results show that the crack produces adverse engineering influence on both of the dynamic stress concentration factor and the dynamic stress intensity factor.展开更多
The concentration and chemical speciation of heavy metals including REEs (rare earth elements), Th (thorium) and U (uranium) in domestic sludge and electroplating sludge were investigated, and those of the domes...The concentration and chemical speciation of heavy metals including REEs (rare earth elements), Th (thorium) and U (uranium) in domestic sludge and electroplating sludge were investigated, and those of the domestic sludge were compared with those of natural soil. Removal of heavy metals in electroplating sludge was studied with bio-surfactants (saponin and sophorolipid) by batch and column experiments. The results suggested that heavy metals have greater concentrations and exist as more relatively unstable fraction in sludge than those in Natural soil. Nonionic saponin is more efficient than sophorolipid for the removal of heavy metals from the electroplating sludge, and mainly reacts with carbonate state (i.e., F3) and Fe-Mn oxide state (i.e., F5) fractions. The recovery efficiency of heavy metals in leachates from the electroplate sludge was attained 88%-97%. Saponin can be reused and be a promising and cost-effective material for the removal of heavy metals in sludge.展开更多
The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to pre...The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.展开更多
Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are establishe...Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are established based on basic physical and biological laws, and have obvious dynamic characteristics and ecological significance. However, they are not flexible enough for the variability of environment conditions and ecological processes found in offshore marine areas, where it is often difficult to obtain parameters for the model, and the precision of the model is often low. In this paper, a new modeling method is introduced, which aims to establish an evolution model of marine ecosystems by coupling statistics with differential dynamics. Firstly, we outline the basic concept and method of inverse modeling of marine ecosystems. Then we set up a statistical dynamics model of marine ecosystems evolution according to annual ecological observation data from Jiaozhou Bay. This was done under the forcing conditions of sea surface temperature and surface irradiance and considering the state variables of phytoplankton, zooplankton and nutrients. This model is dynamic, makes the best of field observation data, and the average predicted precision can reach 90% or higher. A simpler model can be easily obtained through eliminating the terms with smaller contributions according to the weight coefficients of model differential items. The method proposed in this paper avoids the difficulties of obtaining and optimizing parameters, which exist in traditional research, and it provides a new path for research of marine ecological dynamics.展开更多
A hierarchy-structured predictive controller is designed and analyzed for rotation motion dynamics of a generic hypersonic vehicle(GHV).This vehicle model has fast variability,is highly nonlinear,and includes uncertai...A hierarchy-structured predictive controller is designed and analyzed for rotation motion dynamics of a generic hypersonic vehicle(GHV).This vehicle model has fast variability,is highly nonlinear,and includes uncertain parameters.The controller contains two subsystems,the inner-fast-loop nonlinear generable predictive controller(NGPC)and the outer-slow-loop NGPC,both of which are designed by the closed-form optimal generable predictive control method.Thus,the heavy on-line computational burden in the classical predictive control method is avoided.The hierarchy structure of the control system decreases the relative degree of each subsystem and helps increase the dynamic response speed of the attitude controller.In order to improve the robustness of the control system,a feedback correction algorithm is proposed that corrects the calculation error between the predictive model and the real dynamic model.Simulation studies are conducted for the trimmed cruise conditions of an altitude of 33.5 km and Mach 15 to investigate the responses of the vehicle to the step commands of angle of attack,sideslip angle,and bank angle.The simulation studies demonstrate that the proposed controller is robust with respect to the parametric uncertainties and atmospheric disturbance,and meets the performance requirements of GHV with acceptable control inputs.展开更多
文摘The paper presents a very simple method, which in two stages enables to calculate the plane statically indeterminate truss by the application of one of methods used for the force calculation in members of the statically determinate trusses. The results are obtained in a very simple and quick way. Although the force values are approximated but they are relatively very close to those, which are determined by the exact methods. The point of the two-stage calculation process of the statically indeterminate trusses is to determine schemes of two independent and simple statically determined trusses, which after superposition of their patterns will give in the result a pattern of the initial, more complex form of the statically indeterminate truss. Each of the simple truss has to be of the same clear span and the load forces have to be of the half values and they have to be applied to the same nodes like in truss of the initial structural configuration.
文摘This paper is to establish a nitrogen and phosphorus nutrients cycle-based numerical model of ecological dynamics for Xiamen Bay on the basis of the existing three-dimensional barocline hydrodynamic model. The calculation results show that the estuarine district of Jiulongjiang estuary has the highest inorganic nitrogen concentration followed by the West Harbor, which demonstrates that Jiulongjiang River is the main input source of inorganic nitrogen in Xiamen Bay. The West Harbor has relatively high concentration of nutrients caused by the huge land pollution emission and its own poor water exchange capacity; while the distribution rules of phytoplankton biomass correspond with those of phosphates, demonstrating Xiamen Bay's phytoplankton controlled by phosphorus; the haloplankton biomass differs slightly, presenting the gradual reduction from the interior part to the exterior part of the bay.
基金Projects(50574091,50774084) supported by the National Natural Science Foundation of China
文摘A feasible method to improve the reliability and processing efficiency of large vibrating screen via the application of an elastic screen surface with multiple attached substructures (ESSMAS) was proposed. In the ESSMAS, every screen rod, with ends embedded into elastomer, is coupled to the main screen structure in a relatively flexible manner. The theoretical analysis was conducted, which consists of establishing dynamic model promoted from the fuzzy structure theory as well as calculating for the equivalent stiffness of each attached structure. According to the numerical simulation using the NEWMARK-fl integration method, this assembling pattern significantly leads to the screen surface/rod having larger vibration intensity than that of the corresponding position on screen structure, which specifically, with an averaged acceleration amplitude increasing ratio of 11.37% in theoretical analysis and 20.27% in experimental test. The experimental results, within a tolerant error, also confirm the established model and demonstrate the feasibility of ESSMAS.
文摘The problem of scattering of SH-wave by a circular cavity and an arbitrary beeline crack in right-angle plane was investigated using the methods of Green's function,complex variables and muti-polar coordinates.Firstly,we constructed a suitable Green's function,which is an essential solution to the displacement field for the elastic right-angle plane possessing a circular cavity while bearing out-of-plane harmonic line source load at arbitrary point.Secondly,based on the method of crack-division,integration for solution was established,then expressions of displacement and stress were obtained while crack and circular cavities were both in existence.Finally,the dynamic stress concentration factor around the circular cavity and the dynamic stress intensity factor at crack tip were discussed to the cases of different parameters in numerical examples.Calculation results show that the crack produces adverse engineering influence on both of the dynamic stress concentration factor and the dynamic stress intensity factor.
文摘The concentration and chemical speciation of heavy metals including REEs (rare earth elements), Th (thorium) and U (uranium) in domestic sludge and electroplating sludge were investigated, and those of the domestic sludge were compared with those of natural soil. Removal of heavy metals in electroplating sludge was studied with bio-surfactants (saponin and sophorolipid) by batch and column experiments. The results suggested that heavy metals have greater concentrations and exist as more relatively unstable fraction in sludge than those in Natural soil. Nonionic saponin is more efficient than sophorolipid for the removal of heavy metals from the electroplating sludge, and mainly reacts with carbonate state (i.e., F3) and Fe-Mn oxide state (i.e., F5) fractions. The recovery efficiency of heavy metals in leachates from the electroplate sludge was attained 88%-97%. Saponin can be reused and be a promising and cost-effective material for the removal of heavy metals in sludge.
基金Supported by the Key Program of National Natural Science Foundation of China(No.51138001)the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51121005)+2 种基金the Fundamental Research Funds for the Central Universities(DUT13LK16)the Young Scientists Fund of National Natural Science Foundation of China(No.51109134)China Postdoctoral Science Foundation(No.2011M500814)
文摘The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2010CB428703)Oceanic Science Fund for Young Scholar of SOA (Nos. 2010225, 2010118)+1 种基金Public Science and Technology Research Funds Projects of Ocean of China (Nos. 201005008, 201005009)Open Fund of MOIDAT (No. 201011)
文摘Models of marine ecosystem dynamics play an important role in revealing the evolution mechanisms of marine ecosystems and in forecasting their future changes. Most traditional ecological dynamics models are established based on basic physical and biological laws, and have obvious dynamic characteristics and ecological significance. However, they are not flexible enough for the variability of environment conditions and ecological processes found in offshore marine areas, where it is often difficult to obtain parameters for the model, and the precision of the model is often low. In this paper, a new modeling method is introduced, which aims to establish an evolution model of marine ecosystems by coupling statistics with differential dynamics. Firstly, we outline the basic concept and method of inverse modeling of marine ecosystems. Then we set up a statistical dynamics model of marine ecosystems evolution according to annual ecological observation data from Jiaozhou Bay. This was done under the forcing conditions of sea surface temperature and surface irradiance and considering the state variables of phytoplankton, zooplankton and nutrients. This model is dynamic, makes the best of field observation data, and the average predicted precision can reach 90% or higher. A simpler model can be easily obtained through eliminating the terms with smaller contributions according to the weight coefficients of model differential items. The method proposed in this paper avoids the difficulties of obtaining and optimizing parameters, which exist in traditional research, and it provides a new path for research of marine ecological dynamics.
文摘A hierarchy-structured predictive controller is designed and analyzed for rotation motion dynamics of a generic hypersonic vehicle(GHV).This vehicle model has fast variability,is highly nonlinear,and includes uncertain parameters.The controller contains two subsystems,the inner-fast-loop nonlinear generable predictive controller(NGPC)and the outer-slow-loop NGPC,both of which are designed by the closed-form optimal generable predictive control method.Thus,the heavy on-line computational burden in the classical predictive control method is avoided.The hierarchy structure of the control system decreases the relative degree of each subsystem and helps increase the dynamic response speed of the attitude controller.In order to improve the robustness of the control system,a feedback correction algorithm is proposed that corrects the calculation error between the predictive model and the real dynamic model.Simulation studies are conducted for the trimmed cruise conditions of an altitude of 33.5 km and Mach 15 to investigate the responses of the vehicle to the step commands of angle of attack,sideslip angle,and bank angle.The simulation studies demonstrate that the proposed controller is robust with respect to the parametric uncertainties and atmospheric disturbance,and meets the performance requirements of GHV with acceptable control inputs.