This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to...This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to study distribution system behavior under different operating conditions. Two-bus connected by asymmetrical line is used as the study system. The effects of both unbalance and extreme loading conditions are investigated. Also, the impact of distributed energy resources is studied. Different case studies and loading scenarios are presented to trace the eigenvalues of the Jacobian matrix. The results exhibit the existence of a new bifurcation point which may not be related to the voltage stability.展开更多
We present the interesting result that under sinusoidal field detuning setting along the propagation direction of 1D atomic lattices, the probe susceptibility response of the lattices, regardless of atomic configurati...We present the interesting result that under sinusoidal field detuning setting along the propagation direction of 1D atomic lattices, the probe susceptibility response of the lattices, regardless of atomic configuration, uniformly demonstrates pseudo-PT-antisymmetry, which by our definition corresponds to n(z)=-n*(-z), the complex refractive index antisymmetry along propagation axis, and when being cast back to quantum mechanical side, corresponds to V (x, t)=-V*(x,-t), the conjugate time-reversal antisymmetry of complex potential. We define this as the pseudoPT-antisymmetry, and prove the reason for this phenomenon to be the quantum-mechanical nature described by master equation under weak field approximation for any configuration of 1D atomic lattices. This work will help to deepen the understanding of origin of optical response features of atomic lattices, and will certainly open up the gate to a more rigorous, durable and flexible method of atomic optical lattice design.展开更多
文摘This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to study distribution system behavior under different operating conditions. Two-bus connected by asymmetrical line is used as the study system. The effects of both unbalance and extreme loading conditions are investigated. Also, the impact of distributed energy resources is studied. Different case studies and loading scenarios are presented to trace the eigenvalues of the Jacobian matrix. The results exhibit the existence of a new bifurcation point which may not be related to the voltage stability.
基金Support from National Basic Research Program of China under Grant No.2014CB921403National Natural Science Foundation of China under Grant Nos.11534002,U1730449 and U1530401
文摘We present the interesting result that under sinusoidal field detuning setting along the propagation direction of 1D atomic lattices, the probe susceptibility response of the lattices, regardless of atomic configuration, uniformly demonstrates pseudo-PT-antisymmetry, which by our definition corresponds to n(z)=-n*(-z), the complex refractive index antisymmetry along propagation axis, and when being cast back to quantum mechanical side, corresponds to V (x, t)=-V*(x,-t), the conjugate time-reversal antisymmetry of complex potential. We define this as the pseudoPT-antisymmetry, and prove the reason for this phenomenon to be the quantum-mechanical nature described by master equation under weak field approximation for any configuration of 1D atomic lattices. This work will help to deepen the understanding of origin of optical response features of atomic lattices, and will certainly open up the gate to a more rigorous, durable and flexible method of atomic optical lattice design.