This paper is concerned with the estimating problem of seemingly unrelated(SU)nonparametric additive regression models.A polynomial spline based two-stage efficient approach is proposed to estimate the nonparametric c...This paper is concerned with the estimating problem of seemingly unrelated(SU)nonparametric additive regression models.A polynomial spline based two-stage efficient approach is proposed to estimate the nonparametric components,which takes both of the additive structure and correlation between equations into account.The asymptotic normality of the derived estimators are established.The authors also show they own some advantages,including they are asymptotically more efficient than those based on only the individual regression equation and have an oracle property,which is the asymptotic distribution of each additive component is the same as it would be if the other components were known with certainty.Some simulation studies are conducted to illustrate the finite sample performance of the proposed procedure.Applying the proposed procedure to a real data set is also made.展开更多
Soil-borne plant pathogens are among the most important limiting factors for the productivity of agro-ecosystems. Fungistasis is the natural capability of soils to inhibit the germination and growth of soil-borne fung...Soil-borne plant pathogens are among the most important limiting factors for the productivity of agro-ecosystems. Fungistasis is the natural capability of soils to inhibit the germination and growth of soil-borne fungi in the presence of optimal abiotic conditions. The objective of this study was to assess the effects of different soil managements, in terms of soil amendment types and frequency of application, on fungistasis. For this purpose, a microcosm experiment was performed by conditioning a soil with frequent applications of organic matter with contrasting biochemical quality (i. e., glucose, alfalfa straw and wheat straw). Thereafter, the fungistasis response was assessed on four fungi (Aspergillus niger, Botrytis cinerea, Pyrenoehaeta lycopersici and Trichoderma harzianum). Conditioned soils were characterized by measuring microbial activity (soil respiration) and functional diversity using the BIOLOG EcoPlatesTM method. Results showed that irrespective of the fungal species and amendment types, frequent applications of organic matter reduced fungistasis relief and shortened the time required for fungistasis restoration. The frequent addition of easily decomposable organic compounds enhanced soil respiration and its specific catabolic capabilities. This study demonstrated that frequent applications of organic matter affected soil fungistasis likely as a result of higher microbial activity and functional diversity.展开更多
基金supported by National Natural Science Funds for Distinguished Young Scholar under Grant No.70825004National Natural Science Foundation of China under Grant Nos.10731010 and 10628104+3 种基金the National Basic Research Program under Grant No.2007CB814902Creative Research Groups of China under Grant No.10721101supported by leading Academic Discipline Program,211 Project for Shanghai University of Finance and Economics(the 3rd phase)and project number:B803supported by grants from the National Natural Science Foundation of China under Grant No.11071154
文摘This paper is concerned with the estimating problem of seemingly unrelated(SU)nonparametric additive regression models.A polynomial spline based two-stage efficient approach is proposed to estimate the nonparametric components,which takes both of the additive structure and correlation between equations into account.The asymptotic normality of the derived estimators are established.The authors also show they own some advantages,including they are asymptotically more efficient than those based on only the individual regression equation and have an oracle property,which is the asymptotic distribution of each additive component is the same as it would be if the other components were known with certainty.Some simulation studies are conducted to illustrate the finite sample performance of the proposed procedure.Applying the proposed procedure to a real data set is also made.
文摘Soil-borne plant pathogens are among the most important limiting factors for the productivity of agro-ecosystems. Fungistasis is the natural capability of soils to inhibit the germination and growth of soil-borne fungi in the presence of optimal abiotic conditions. The objective of this study was to assess the effects of different soil managements, in terms of soil amendment types and frequency of application, on fungistasis. For this purpose, a microcosm experiment was performed by conditioning a soil with frequent applications of organic matter with contrasting biochemical quality (i. e., glucose, alfalfa straw and wheat straw). Thereafter, the fungistasis response was assessed on four fungi (Aspergillus niger, Botrytis cinerea, Pyrenoehaeta lycopersici and Trichoderma harzianum). Conditioned soils were characterized by measuring microbial activity (soil respiration) and functional diversity using the BIOLOG EcoPlatesTM method. Results showed that irrespective of the fungal species and amendment types, frequent applications of organic matter reduced fungistasis relief and shortened the time required for fungistasis restoration. The frequent addition of easily decomposable organic compounds enhanced soil respiration and its specific catabolic capabilities. This study demonstrated that frequent applications of organic matter affected soil fungistasis likely as a result of higher microbial activity and functional diversity.