Cracking gas compressor is usually a centrifugal compressor. The information on the performance of a centrifugal compressor under all conditions is not available, which restricts the operation optimization for compres...Cracking gas compressor is usually a centrifugal compressor. The information on the performance of a centrifugal compressor under all conditions is not available, which restricts the operation optimization for compressor. To solve this problem, two back propagation (BP) neural networks were introduced to model the performance of a compressor by using the data provided by manufacturer. The input data of the model under other conditions should be corrected according to the similarity theory. The method was used to optimize the system of a cracking gas compressor by embedding the compressor performance model into the ASPEN PLUS model of compressor. The result shows that it is an effective method to optimize the compressor system.展开更多
By applying experimental and numerical simulations, the motion performance of a semi-submersible platform with mooring positoning system under combined actions of wind and waves is studied. The numerical simulation is...By applying experimental and numerical simulations, the motion performance of a semi-submersible platform with mooring positoning system under combined actions of wind and waves is studied. The numerical simulation is conducted by the method of nonlinear time domain coupled analysis, and the mooring forces are calculated by the piecewise extrapolating method. The scale in the model experiment is 1:100, and the mooring system of the model is designed with the method of equivalent water-depth truncation by comparing the numerical and the experimental results, the platform motion and mooring forces subject to wind and waves are investigated. The results indicate that the numerically simulated mooring forces agree well with the experimental results in static equivalent field, but show some difference in dynamic equivalent field; the numerically simulated platform motions coincide well with the experimental results. The maximum motion of the platform under operating conditions is 20.5 m. It means that the horizontal displacement is 2% less than the water depth, which satisfies the operating requirements.展开更多
The study was aimed to identify the problems and also to suggest some solutions for robotic systems applications in harvesting of kiwi and apples. The results obtained show that physicomechanical properties of the har...The study was aimed to identify the problems and also to suggest some solutions for robotic systems applications in harvesting of kiwi and apples. The results obtained show that physicomechanical properties of the harvested fruits had an effect on the use of robotic systems. Parameters such as weight, height, width, thickness and surface area were identified as the main effect in robotic fruit harvesting. Image processing techniques also had direct effect on robotic systems operation which therefore requires careful selection procedure to achieve results accuracy. It was observed that the C# programming language used in robotic systems fruit harvesting should be parallel with the image processing to ensure accurate conversion of kinematic calculation, system input parameters and constant values. The use of hobby-type parts of a robot in the prototype study showed reliable results. However, to ensure functionality of the robotic systems application, industrial robots and servo engines should be used. It was also observed that the use of a gripper for picking the fruits from the branch must The engines that make the system work should be strong and the be made considering the physicomechanical properties of the fruit. cutting system should also be appropriate.展开更多
Learning control for gradually varying references in iteration domain was considered in this research, and a composite iterative learning control strategy was proposed to enable a plant to track unknown iteration-depe...Learning control for gradually varying references in iteration domain was considered in this research, and a composite iterative learning control strategy was proposed to enable a plant to track unknown iteration-dependent trajectories. Specifically, by decoupling the current reference into the desired trajectory of the last trial and a disturbance signal with small magnitude, the learning and feedback parts were designed respectively to ensure fine tracking performance. After some theoretical analysis, the judging condition on whether the composite iterative learning control approach achieves better control results than pure feedback contro! was obtained for varying references. The convergence property of the closed-loop system was rigorously studied and the saturation problem was also addressed in the controller. The designed composite iterative learning control strategy is successfully employed in an atomic force microscope system, with both simulation and experimental results clearly demonstrating its superior performance.展开更多
This paper discusses a design method for the control system of a weigh feeder that supplies powder and granular material at a constant rate. Most weigh feeders employed in industry are controlled by proportional and i...This paper discusses a design method for the control system of a weigh feeder that supplies powder and granular material at a constant rate. Most weigh feeders employed in industry are controlled by proportional and integral (PI) compensation, and the control performance is decided by the selection of parameters. To attain advanced control performance by PI control, the PI parameters are designed on the basis of generalized minimum variance control (GMVC). In this study, to achieve user-specified control performance by GMVC-based PI control, the design parameters of GMVC are automatically adjusted using a performance-adaptive method. The control performance discussed in this study consists of the variance of the control error and that of the difference in the control input. In a conventional performance-adaptive method, the variance of the control error is reduced. In this study, to reduce energy consumption and to achieve user-specified control performance, the variance of the difference in the control input is specified and the design parameter is determined. To demonstrate its effectiveness, the proposed method is applied to an actual weigh feeder.展开更多
This paper presents a simple and cost-effective method for the production of micro-sized silicon carbide whiskers at high yield and the effect on heat transfer enhancement for the whisker laden fluids. For SiC whisker...This paper presents a simple and cost-effective method for the production of micro-sized silicon carbide whiskers at high yield and the effect on heat transfer enhancement for the whisker laden fluids. For SiC whisker synthesis, the starting powder mix- ture is obtained by milling short carbon fibers with the white ashes of rice hulls. Calcina:ion in argon, together with the subse- quent purification process, results in a high yield of SiC whiskers, which possess a diameter of 200-400 nm and a length of several tens of microns. The formation of the whiskers is discussed according to VS growth mechanism. Convective heat transfer performance in small channel tubes is then studied for fluid systems mixed with those micro-sized SiC whiskers at different concentrations. The heat transfer coefficient of SiC containing fluid can be significantly improved in comparison to the base fluid.展开更多
Soil-borne plant pathogens are among the most important limiting factors for the productivity of agro-ecosystems. Fungistasis is the natural capability of soils to inhibit the germination and growth of soil-borne fung...Soil-borne plant pathogens are among the most important limiting factors for the productivity of agro-ecosystems. Fungistasis is the natural capability of soils to inhibit the germination and growth of soil-borne fungi in the presence of optimal abiotic conditions. The objective of this study was to assess the effects of different soil managements, in terms of soil amendment types and frequency of application, on fungistasis. For this purpose, a microcosm experiment was performed by conditioning a soil with frequent applications of organic matter with contrasting biochemical quality (i. e., glucose, alfalfa straw and wheat straw). Thereafter, the fungistasis response was assessed on four fungi (Aspergillus niger, Botrytis cinerea, Pyrenoehaeta lycopersici and Trichoderma harzianum). Conditioned soils were characterized by measuring microbial activity (soil respiration) and functional diversity using the BIOLOG EcoPlatesTM method. Results showed that irrespective of the fungal species and amendment types, frequent applications of organic matter reduced fungistasis relief and shortened the time required for fungistasis restoration. The frequent addition of easily decomposable organic compounds enhanced soil respiration and its specific catabolic capabilities. This study demonstrated that frequent applications of organic matter affected soil fungistasis likely as a result of higher microbial activity and functional diversity.展开更多
This paper discusses the properties of the storage functions for a class of nonlinear stochastic systems. Some necessary and sufficient conditions for a function to be a storage function are derived. As applications, ...This paper discusses the properties of the storage functions for a class of nonlinear stochastic systems. Some necessary and sufficient conditions for a function to be a storage function are derived. As applications, the finite and infinite horizon nonlinear stochastic H∞ controls for systems with state, control, and external disturbance dependent noise are investigated, which generalize the previous results.展开更多
基金Supported by the National Natural Science Foundation of China (20976048, 21176072)the Fundamental Research Funds for the Central Universities
文摘Cracking gas compressor is usually a centrifugal compressor. The information on the performance of a centrifugal compressor under all conditions is not available, which restricts the operation optimization for compressor. To solve this problem, two back propagation (BP) neural networks were introduced to model the performance of a compressor by using the data provided by manufacturer. The input data of the model under other conditions should be corrected according to the similarity theory. The method was used to optimize the system of a cracking gas compressor by embedding the compressor performance model into the ASPEN PLUS model of compressor. The result shows that it is an effective method to optimize the compressor system.
文摘By applying experimental and numerical simulations, the motion performance of a semi-submersible platform with mooring positoning system under combined actions of wind and waves is studied. The numerical simulation is conducted by the method of nonlinear time domain coupled analysis, and the mooring forces are calculated by the piecewise extrapolating method. The scale in the model experiment is 1:100, and the mooring system of the model is designed with the method of equivalent water-depth truncation by comparing the numerical and the experimental results, the platform motion and mooring forces subject to wind and waves are investigated. The results indicate that the numerically simulated mooring forces agree well with the experimental results in static equivalent field, but show some difference in dynamic equivalent field; the numerically simulated platform motions coincide well with the experimental results. The maximum motion of the platform under operating conditions is 20.5 m. It means that the horizontal displacement is 2% less than the water depth, which satisfies the operating requirements.
文摘The study was aimed to identify the problems and also to suggest some solutions for robotic systems applications in harvesting of kiwi and apples. The results obtained show that physicomechanical properties of the harvested fruits had an effect on the use of robotic systems. Parameters such as weight, height, width, thickness and surface area were identified as the main effect in robotic fruit harvesting. Image processing techniques also had direct effect on robotic systems operation which therefore requires careful selection procedure to achieve results accuracy. It was observed that the C# programming language used in robotic systems fruit harvesting should be parallel with the image processing to ensure accurate conversion of kinematic calculation, system input parameters and constant values. The use of hobby-type parts of a robot in the prototype study showed reliable results. However, to ensure functionality of the robotic systems application, industrial robots and servo engines should be used. It was also observed that the use of a gripper for picking the fruits from the branch must The engines that make the system work should be strong and the be made considering the physicomechanical properties of the fruit. cutting system should also be appropriate.
基金Projects(61127006,61325017)supported by the National Natural Science Foundation of China
文摘Learning control for gradually varying references in iteration domain was considered in this research, and a composite iterative learning control strategy was proposed to enable a plant to track unknown iteration-dependent trajectories. Specifically, by decoupling the current reference into the desired trajectory of the last trial and a disturbance signal with small magnitude, the learning and feedback parts were designed respectively to ensure fine tracking performance. After some theoretical analysis, the judging condition on whether the composite iterative learning control approach achieves better control results than pure feedback contro! was obtained for varying references. The convergence property of the closed-loop system was rigorously studied and the saturation problem was also addressed in the controller. The designed composite iterative learning control strategy is successfully employed in an atomic force microscope system, with both simulation and experimental results clearly demonstrating its superior performance.
文摘This paper discusses a design method for the control system of a weigh feeder that supplies powder and granular material at a constant rate. Most weigh feeders employed in industry are controlled by proportional and integral (PI) compensation, and the control performance is decided by the selection of parameters. To attain advanced control performance by PI control, the PI parameters are designed on the basis of generalized minimum variance control (GMVC). In this study, to achieve user-specified control performance by GMVC-based PI control, the design parameters of GMVC are automatically adjusted using a performance-adaptive method. The control performance discussed in this study consists of the variance of the control error and that of the difference in the control input. In a conventional performance-adaptive method, the variance of the control error is reduced. In this study, to reduce energy consumption and to achieve user-specified control performance, the variance of the difference in the control input is specified and the design parameter is determined. To demonstrate its effectiveness, the proposed method is applied to an actual weigh feeder.
基金supported by Louisiana Board of Regents ITRS Program(Grant Nos.LEQSF(2007-10)-RD-B-02 and CFAW-Ceramics LLC)
文摘This paper presents a simple and cost-effective method for the production of micro-sized silicon carbide whiskers at high yield and the effect on heat transfer enhancement for the whisker laden fluids. For SiC whisker synthesis, the starting powder mix- ture is obtained by milling short carbon fibers with the white ashes of rice hulls. Calcina:ion in argon, together with the subse- quent purification process, results in a high yield of SiC whiskers, which possess a diameter of 200-400 nm and a length of several tens of microns. The formation of the whiskers is discussed according to VS growth mechanism. Convective heat transfer performance in small channel tubes is then studied for fluid systems mixed with those micro-sized SiC whiskers at different concentrations. The heat transfer coefficient of SiC containing fluid can be significantly improved in comparison to the base fluid.
文摘Soil-borne plant pathogens are among the most important limiting factors for the productivity of agro-ecosystems. Fungistasis is the natural capability of soils to inhibit the germination and growth of soil-borne fungi in the presence of optimal abiotic conditions. The objective of this study was to assess the effects of different soil managements, in terms of soil amendment types and frequency of application, on fungistasis. For this purpose, a microcosm experiment was performed by conditioning a soil with frequent applications of organic matter with contrasting biochemical quality (i. e., glucose, alfalfa straw and wheat straw). Thereafter, the fungistasis response was assessed on four fungi (Aspergillus niger, Botrytis cinerea, Pyrenoehaeta lycopersici and Trichoderma harzianum). Conditioned soils were characterized by measuring microbial activity (soil respiration) and functional diversity using the BIOLOG EcoPlatesTM method. Results showed that irrespective of the fungal species and amendment types, frequent applications of organic matter reduced fungistasis relief and shortened the time required for fungistasis restoration. The frequent addition of easily decomposable organic compounds enhanced soil respiration and its specific catabolic capabilities. This study demonstrated that frequent applications of organic matter affected soil fungistasis likely as a result of higher microbial activity and functional diversity.
基金This research is supported by the National Natural Science Foundation of China under Grant Nos. 10921101 and 60874032, the National Basic Research Program of China (973 Program) under Grant No. 2007CB814904, the Key Project of Natural Science Foundation of Shandong Province under Grant No. ZR2009GZ001, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20103718110006.
文摘This paper discusses the properties of the storage functions for a class of nonlinear stochastic systems. Some necessary and sufficient conditions for a function to be a storage function are derived. As applications, the finite and infinite horizon nonlinear stochastic H∞ controls for systems with state, control, and external disturbance dependent noise are investigated, which generalize the previous results.