Tunnels in an urban area, in many cases, are constructed in soft ground which contains underground water, near existing facilities and structures. Structural stability for the tunnel and also the nearby structures and...Tunnels in an urban area, in many cases, are constructed in soft ground which contains underground water, near existing facilities and structures. Structural stability for the tunnel and also the nearby structures and facilities is vital in this kind of work. Slurry pipe jacking was firmly established as a special method for the non-disruptive construction of underground pipelines of sewage systems. This method utilizes mud slurry that is formed around the pipes in order to stabilize the surrounding soil. In the pipe roof method the tubing elements that are constructed by slurry pipe jacking are near each other longitudinally, and create a rigid and stable lining before the excavation of the main tunnel. This paper discusses 'the application of a slurry pipe jacking system on 'the pipe roof method by means of numerical analysis. Because of the rigid behavior of the lining, the results show little subsidence, making this method a reliable method of constructing large tunnels with small cover in an urban area.展开更多
The contemplation of contemporary architectural designs shows an increasing demand for the development of more adaptable, flexible and transformable structures. This type of structures can adapt with different environ...The contemplation of contemporary architectural designs shows an increasing demand for the development of more adaptable, flexible and transformable structures. This type of structures can adapt with different environmental conditions and meet different functions. This can help in reducing environmental waste and pollution associated with many buildings and above all can save on cost and time. Natural systems have inspired human being, since they began to build and design. Architects and designers have utilized nature as one of the main resources of information for the creation of innovative architectural spaces. One of the unique features of natural structures is the way that their components open and close in order to respond to a particular requirement or the environmental changes. This aspect has inspired many designers for the development of transformable architectural structures that can change their shape and geometry to be able to adapt with specific conditions. To make a way toward the design of transformable structure for temporary applications, the authors have developed a new type of adaptable structures according to natural forms. The proposed design applies the transformation principles that exist in potato's flower and the movement mechanisms used in a spider's leg. The design is able to fit to different topographies and have a potential to be folded to a very compact state in a very short period of time. The detailed design and the different configurations of the system applications will be presented in this paper. The result of the study shows that using modular triangular plates can create a changeable module that is not only able to respond to different functions and environmental changes but it is also able to shape different configuration to be able to respond to different user's ambitions. The compactability of this structure into 1/3 of its base dimensions; makes its transportation fast and with minimum costs. These capabilities make this structure suitable for temporary buildings such as exhibitions, temporary settlements or hospital in damaged areas.展开更多
文摘Tunnels in an urban area, in many cases, are constructed in soft ground which contains underground water, near existing facilities and structures. Structural stability for the tunnel and also the nearby structures and facilities is vital in this kind of work. Slurry pipe jacking was firmly established as a special method for the non-disruptive construction of underground pipelines of sewage systems. This method utilizes mud slurry that is formed around the pipes in order to stabilize the surrounding soil. In the pipe roof method the tubing elements that are constructed by slurry pipe jacking are near each other longitudinally, and create a rigid and stable lining before the excavation of the main tunnel. This paper discusses 'the application of a slurry pipe jacking system on 'the pipe roof method by means of numerical analysis. Because of the rigid behavior of the lining, the results show little subsidence, making this method a reliable method of constructing large tunnels with small cover in an urban area.
文摘The contemplation of contemporary architectural designs shows an increasing demand for the development of more adaptable, flexible and transformable structures. This type of structures can adapt with different environmental conditions and meet different functions. This can help in reducing environmental waste and pollution associated with many buildings and above all can save on cost and time. Natural systems have inspired human being, since they began to build and design. Architects and designers have utilized nature as one of the main resources of information for the creation of innovative architectural spaces. One of the unique features of natural structures is the way that their components open and close in order to respond to a particular requirement or the environmental changes. This aspect has inspired many designers for the development of transformable architectural structures that can change their shape and geometry to be able to adapt with specific conditions. To make a way toward the design of transformable structure for temporary applications, the authors have developed a new type of adaptable structures according to natural forms. The proposed design applies the transformation principles that exist in potato's flower and the movement mechanisms used in a spider's leg. The design is able to fit to different topographies and have a potential to be folded to a very compact state in a very short period of time. The detailed design and the different configurations of the system applications will be presented in this paper. The result of the study shows that using modular triangular plates can create a changeable module that is not only able to respond to different functions and environmental changes but it is also able to shape different configuration to be able to respond to different user's ambitions. The compactability of this structure into 1/3 of its base dimensions; makes its transportation fast and with minimum costs. These capabilities make this structure suitable for temporary buildings such as exhibitions, temporary settlements or hospital in damaged areas.