It has been an established fact that comminution processes, crushing and grinding, are most energy intensive processes which account for more than half of the total energy consumed in mineral industries.Various altern...It has been an established fact that comminution processes, crushing and grinding, are most energy intensive processes which account for more than half of the total energy consumed in mineral industries.Various alternative pre-treatment methods have been tried by experts around the globe. Although these methods yielded positive results in terms of reduction in energy consumption in crushing and particularly, in grinding operations at laboratory scale, their industrial application still remains an unresolved issue and challenge. Present review paper describes each one of these methods along with outcome of earlier studies and issues that need to be addressed through further rigorous experimental investigation.It also suggests the direction in which future studies can be carried out to meet the primary objective of making comminution processes more energy efficient than today they are.展开更多
Reduction of energy consumption in comminution is of significant importance in mining industry. To reduce such energy consumption the energy efficiency in an individual operation such as blasting must be increased. By...Reduction of energy consumption in comminution is of significant importance in mining industry. To reduce such energy consumption the energy efficiency in an individual operation such as blasting must be increased. By using both new investigations and previous experimental results, this paper demonstrates that (1) kinetic energy carried by moving fragments in rock fracture is notable and it increases with an increasing loading rate;(2) this kinetic energy can be well used in secondary fragmentation in crushing and blasting. Accordingly, part of the muck pile from previous blast should be left in front of new(bench) face in either open pit or underground blasting. If so, when new blast occurs, the fragments from the new blast will collide with the muck pile left from the previous blast, and the kinetic energy carried by the moving fragments will be partly used in their secondary fragmentation.展开更多
Since the amount of decentralised power generation is increasing, it is important to develop an energy management system for low-voltage grids. This paper presents a method to operate such a management system. The sys...Since the amount of decentralised power generation is increasing, it is important to develop an energy management system for low-voltage grids. This paper presents a method to operate such a management system. The system is designed for managing a group of smart houses which can consume or supply electrical energy. The aims are to reduce the transmission losses and to stay within the permitted limits of both the voltage drop and the utilisation of lines and transformers. The reduction of the losses is implemented in the LOMA (loss-optimising-management-algorithm). This algorithm tries to find the power flow situation where minimal losses occur. The results of LOMA, the current power situation (in the low- and medium-voltage system) and the maximum power situation (based on grid parameters) are summarised in an individual incentive signal for every smart home, The simulations show the feasibility of such an energy management and a significant loss reduction.展开更多
Building energy conservation is the basis for carbon emission reduction, through elaborating the relationship between low carbon and energy efficient building. It points out that the construction of energy-saving emis...Building energy conservation is the basis for carbon emission reduction, through elaborating the relationship between low carbon and energy efficient building. It points out that the construction of energy-saving emission reduction is an effective means to solve the problems of high energy consumption of the building, and it is also an important measure for China's carbon emission reduction. According to the climate characteristics in hot summer and cold winter area, low carbon technology suitable for the construction of energy-efficient hot summer and cold winter area is proposed which is based on the analysis of the current main building energy-saving technical measures.展开更多
基金the support provided by Indian Institute of Technology,Kharagpur
文摘It has been an established fact that comminution processes, crushing and grinding, are most energy intensive processes which account for more than half of the total energy consumed in mineral industries.Various alternative pre-treatment methods have been tried by experts around the globe. Although these methods yielded positive results in terms of reduction in energy consumption in crushing and particularly, in grinding operations at laboratory scale, their industrial application still remains an unresolved issue and challenge. Present review paper describes each one of these methods along with outcome of earlier studies and issues that need to be addressed through further rigorous experimental investigation.It also suggests the direction in which future studies can be carried out to meet the primary objective of making comminution processes more energy efficient than today they are.
文摘Reduction of energy consumption in comminution is of significant importance in mining industry. To reduce such energy consumption the energy efficiency in an individual operation such as blasting must be increased. By using both new investigations and previous experimental results, this paper demonstrates that (1) kinetic energy carried by moving fragments in rock fracture is notable and it increases with an increasing loading rate;(2) this kinetic energy can be well used in secondary fragmentation in crushing and blasting. Accordingly, part of the muck pile from previous blast should be left in front of new(bench) face in either open pit or underground blasting. If so, when new blast occurs, the fragments from the new blast will collide with the muck pile left from the previous blast, and the kinetic energy carried by the moving fragments will be partly used in their secondary fragmentation.
文摘Since the amount of decentralised power generation is increasing, it is important to develop an energy management system for low-voltage grids. This paper presents a method to operate such a management system. The system is designed for managing a group of smart houses which can consume or supply electrical energy. The aims are to reduce the transmission losses and to stay within the permitted limits of both the voltage drop and the utilisation of lines and transformers. The reduction of the losses is implemented in the LOMA (loss-optimising-management-algorithm). This algorithm tries to find the power flow situation where minimal losses occur. The results of LOMA, the current power situation (in the low- and medium-voltage system) and the maximum power situation (based on grid parameters) are summarised in an individual incentive signal for every smart home, The simulations show the feasibility of such an energy management and a significant loss reduction.
文摘Building energy conservation is the basis for carbon emission reduction, through elaborating the relationship between low carbon and energy efficient building. It points out that the construction of energy-saving emission reduction is an effective means to solve the problems of high energy consumption of the building, and it is also an important measure for China's carbon emission reduction. According to the climate characteristics in hot summer and cold winter area, low carbon technology suitable for the construction of energy-efficient hot summer and cold winter area is proposed which is based on the analysis of the current main building energy-saving technical measures.