The authors study the generation of matrices with complex entries belonging to some matrix groups, mainly those that are defined by a scalar product space. These matrices have useful applications in quantum mechanical...The authors study the generation of matrices with complex entries belonging to some matrix groups, mainly those that are defined by a scalar product space. These matrices have useful applications in quantum mechanical problems and complex control problems. In this work, the authors try to generate matrices such that: (1) the condition number of these types of matrices is controlled and (2) The algorithm used to generate these matrices preserves their structure.展开更多
This study investigated a water supply recovery problem involving municipal water service piping. The problem consisted in recovering full service after network failure, in order to rapidly satisfy all urgent citywide...This study investigated a water supply recovery problem involving municipal water service piping. The problem consisted in recovering full service after network failure, in order to rapidly satisfy all urgent citywide demands. The optimal recovery solution was achieved through the application of so-called network design problems (NDPs), which are a form of combinatorial optimization problem. However, a conventional NDP is not suitable for addressing urgent situations because (1) it does not utilize the non-failure arcs in the network, and (2) it is solely concerned with stable costs such as flow costs. Therefore, to adapt the technique to such urgent situations, the conventional NDP is here modified to deal with the specified water supply problem. In addition, a numerical illustration using the Sendai water network is presented.展开更多
文摘The authors study the generation of matrices with complex entries belonging to some matrix groups, mainly those that are defined by a scalar product space. These matrices have useful applications in quantum mechanical problems and complex control problems. In this work, the authors try to generate matrices such that: (1) the condition number of these types of matrices is controlled and (2) The algorithm used to generate these matrices preserves their structure.
文摘This study investigated a water supply recovery problem involving municipal water service piping. The problem consisted in recovering full service after network failure, in order to rapidly satisfy all urgent citywide demands. The optimal recovery solution was achieved through the application of so-called network design problems (NDPs), which are a form of combinatorial optimization problem. However, a conventional NDP is not suitable for addressing urgent situations because (1) it does not utilize the non-failure arcs in the network, and (2) it is solely concerned with stable costs such as flow costs. Therefore, to adapt the technique to such urgent situations, the conventional NDP is here modified to deal with the specified water supply problem. In addition, a numerical illustration using the Sendai water network is presented.