The Gaussian weighted trajectory method (GWTM) is a practical implementation of classical S matrix theory (CSMT) in the random phase approximation, CSMT being the first and simplest semi-classical approach of mole...The Gaussian weighted trajectory method (GWTM) is a practical implementation of classical S matrix theory (CSMT) in the random phase approximation, CSMT being the first and simplest semi-classical approach of molecular collisions, developped in the early seventies. Though very close in spirit to the purely classical description, GWTM accounts to some extent for the quantization of the different degrees-of-freedom involved in the processes. While CSMT may give diverging final state distributions, in relation to the rainbow effect of elastic scattering theory, GWTM has never led to such a mathematical catastrophe. The goal of the present note is to explain this finding.展开更多
We investigate synchronization in an array network of nearest-neighbor coupled chaotic oscillators. By using of the Lyapunov stability theory and matrix theory, a criterion for stability of complete synchronization is...We investigate synchronization in an array network of nearest-neighbor coupled chaotic oscillators. By using of the Lyapunov stability theory and matrix theory, a criterion for stability of complete synchronization is deduced. Meanwhile, an estimate of the critical coupling strength is obtained to ensure achieving chaos synchronization. As an example application, a model of coupled Chua's circuits with linearly bidirectional coupling is studied to verify the validity of the criterion.展开更多
The whole analysis process of pneumatic stressed membrane structure contains nine states and seven analysis processes.The zero-stress state is the corner-stone of analysis and design of pneumatic stressed structure,an...The whole analysis process of pneumatic stressed membrane structure contains nine states and seven analysis processes.The zero-stress state is the corner-stone of analysis and design of pneumatic stressed structure,and has significant impact on the pre-stressed state and load state.According to the logical model of the whole numerical analysis process of pneumatic stressed structure,a numerical analysis method to solve the zero-stress state from the elasticized equilibrium state was firstly proposed,called linear compatibility matrix M-P inverse method.Firstly,the pneumatic membrane stressed structure was transferred into grid structure by using membrane link to simulate membrane surface.Secondly,on the basis of equilibrium matrix theory of pin joint structure and small deformation assumption,compatibility equation of system was established.Thirdly,the unstressed length and elongation of links were calculated from the tension and material parameters of elasticized equilibrium state.Finally,using compatibility matrix M-P inverse,the nodal displacement was calculated by solving compatibility equation,the configuration of zero-stress state could be obtained through reverse superposition,and the stress was released.According to the algorithm,the program was coded with MATLAB.The correctness and efficiency of this method were verified by several numerical examples,and it could be found that one elasticized equilibrium state corresponded to one configuration of the zero-stress state.The work has theoretical significance and practical guidance value for pneumatic membrane structural design.展开更多
This paper aims at developing a "local-global" approach for various types of finite dimensional algebras, especially those related to Hecke algebras. The eventual intention is to apply the methods and applic...This paper aims at developing a "local-global" approach for various types of finite dimensional algebras, especially those related to Hecke algebras. The eventual intention is to apply the methods and applications developed here to the cross-characteristic representation theory of finite groups of Lie type. We first review the notions of quasi-hereditary and stratified algebras over a Noetherian commutative ring. We prove that many global properties of these algebras hold if and only if they hold locally at every prime ideal. When the commutative ring is sufficiently good, it is often sufficient to check just the prime ideals of height at most one. These methods are applied to construct certain generalized q-Schur algebras, proving they are often quasi-hereditary(the "good" prime case) but always stratified. Finally, these results are used to prove a triangular decomposition matrix theorem for the modular representations of Hecke algebras at good primes. In the bad prime case, the generalized q-Schur algebras are at least stratified, and a block triangular analogue of the good prime case is proved, where the blocks correspond to Kazhdan-Lusztig cells.展开更多
Gauge duality theory was originated by Preund (1987), and was recently further investigated by Friedlander et al. (2014). When solving some matrix optimization problems via gauge dual, one is usually able to avoid...Gauge duality theory was originated by Preund (1987), and was recently further investigated by Friedlander et al. (2014). When solving some matrix optimization problems via gauge dual, one is usually able to avoid full matrix decompositions such as singular value and/or eigenvalue decompositions. In such an approach, a gauge dual problem is solved in the first stage, and then an optimal solution to the primal problem can be recovered from the dual optimal solution obtained in the first stage. Recently, this theory has been applied to a class of semidefinite programming (SDP) problems with promising numerical results by Friedlander and Mac^to (2016). We establish some theoretical results on applying the gauge duality theory to robust principal component analysis (PCA) and general SDP. For each problem, we present its gauge dual problem, characterize the optimality conditions for the primal-dual gauge pair, and validate a way to recover a primal optimal solution from a dual one. These results are extensions of Friedlander and Macedo (2016) from nuclear norm regularization to robust PCA and from a special class of SDP which requires the coefficient matrix in the linear objective to be positive definite to SDP problems without this restriction. Our results provide further understanding in the potential advantages and disadvantages of the gauge duality theory.展开更多
The three-dimensional inverse transient thermoelastic problem for a thin rectangular object is considered within the context of the theory of generalized thermoelasticity. The upper surface of the rectangular object o...The three-dimensional inverse transient thermoelastic problem for a thin rectangular object is considered within the context of the theory of generalized thermoelasticity. The upper surface of the rectangular object occupying the space D: -a〈xSa; -b〈_y〈b; 0〈z〈h; with the known boundary conditions. Laplace and Finite Marchi-Fasulo transform techniques are used to determine the unknown temperature, temperature distribution, displacement and thermal stresses on upper plane surface of a thin rectangular object. The distributions of the considered physical variables are obtained and represented graphically.展开更多
文摘The Gaussian weighted trajectory method (GWTM) is a practical implementation of classical S matrix theory (CSMT) in the random phase approximation, CSMT being the first and simplest semi-classical approach of molecular collisions, developped in the early seventies. Though very close in spirit to the purely classical description, GWTM accounts to some extent for the quantization of the different degrees-of-freedom involved in the processes. While CSMT may give diverging final state distributions, in relation to the rainbow effect of elastic scattering theory, GWTM has never led to such a mathematical catastrophe. The goal of the present note is to explain this finding.
基金supported by National Natural Science Foundation under Grant Nos.10872014 and 10702023
文摘We investigate synchronization in an array network of nearest-neighbor coupled chaotic oscillators. By using of the Lyapunov stability theory and matrix theory, a criterion for stability of complete synchronization is deduced. Meanwhile, an estimate of the critical coupling strength is obtained to ensure achieving chaos synchronization. As an example application, a model of coupled Chua's circuits with linearly bidirectional coupling is studied to verify the validity of the criterion.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50878128, 50808122)
文摘The whole analysis process of pneumatic stressed membrane structure contains nine states and seven analysis processes.The zero-stress state is the corner-stone of analysis and design of pneumatic stressed structure,and has significant impact on the pre-stressed state and load state.According to the logical model of the whole numerical analysis process of pneumatic stressed structure,a numerical analysis method to solve the zero-stress state from the elasticized equilibrium state was firstly proposed,called linear compatibility matrix M-P inverse method.Firstly,the pneumatic membrane stressed structure was transferred into grid structure by using membrane link to simulate membrane surface.Secondly,on the basis of equilibrium matrix theory of pin joint structure and small deformation assumption,compatibility equation of system was established.Thirdly,the unstressed length and elongation of links were calculated from the tension and material parameters of elasticized equilibrium state.Finally,using compatibility matrix M-P inverse,the nodal displacement was calculated by solving compatibility equation,the configuration of zero-stress state could be obtained through reverse superposition,and the stress was released.According to the algorithm,the program was coded with MATLAB.The correctness and efficiency of this method were verified by several numerical examples,and it could be found that one elasticized equilibrium state corresponded to one configuration of the zero-stress state.The work has theoretical significance and practical guidance value for pneumatic membrane structural design.
基金supported by a 2017 University of New South Wales Science Goldstar Grant(Jie Du)the Simons Foundation(Grant Nos. #359360(Brian Parshall) and #359363 (Leonard Scott))
文摘This paper aims at developing a "local-global" approach for various types of finite dimensional algebras, especially those related to Hecke algebras. The eventual intention is to apply the methods and applications developed here to the cross-characteristic representation theory of finite groups of Lie type. We first review the notions of quasi-hereditary and stratified algebras over a Noetherian commutative ring. We prove that many global properties of these algebras hold if and only if they hold locally at every prime ideal. When the commutative ring is sufficiently good, it is often sufficient to check just the prime ideals of height at most one. These methods are applied to construct certain generalized q-Schur algebras, proving they are often quasi-hereditary(the "good" prime case) but always stratified. Finally, these results are used to prove a triangular decomposition matrix theorem for the modular representations of Hecke algebras at good primes. In the bad prime case, the generalized q-Schur algebras are at least stratified, and a block triangular analogue of the good prime case is proved, where the blocks correspond to Kazhdan-Lusztig cells.
基金supported by Hong Kong Research Grants Council General Research Fund (Grant No. 14205314)National Natural Science Foundation of China (Grant No. 11371192)
文摘Gauge duality theory was originated by Preund (1987), and was recently further investigated by Friedlander et al. (2014). When solving some matrix optimization problems via gauge dual, one is usually able to avoid full matrix decompositions such as singular value and/or eigenvalue decompositions. In such an approach, a gauge dual problem is solved in the first stage, and then an optimal solution to the primal problem can be recovered from the dual optimal solution obtained in the first stage. Recently, this theory has been applied to a class of semidefinite programming (SDP) problems with promising numerical results by Friedlander and Mac^to (2016). We establish some theoretical results on applying the gauge duality theory to robust principal component analysis (PCA) and general SDP. For each problem, we present its gauge dual problem, characterize the optimality conditions for the primal-dual gauge pair, and validate a way to recover a primal optimal solution from a dual one. These results are extensions of Friedlander and Macedo (2016) from nuclear norm regularization to robust PCA and from a special class of SDP which requires the coefficient matrix in the linear objective to be positive definite to SDP problems without this restriction. Our results provide further understanding in the potential advantages and disadvantages of the gauge duality theory.
基金University Grant Commission,New Delhi for providing the partial financial assistance under major research project scheme
文摘The three-dimensional inverse transient thermoelastic problem for a thin rectangular object is considered within the context of the theory of generalized thermoelasticity. The upper surface of the rectangular object occupying the space D: -a〈xSa; -b〈_y〈b; 0〈z〈h; with the known boundary conditions. Laplace and Finite Marchi-Fasulo transform techniques are used to determine the unknown temperature, temperature distribution, displacement and thermal stresses on upper plane surface of a thin rectangular object. The distributions of the considered physical variables are obtained and represented graphically.