A silicon on reflector (SOR) substrate containing a thin crystal silicon layer and a buried Si/SiO 2 Bragg reflector is reported. The substrate, which is applied to optoelectronic devices, is fabricated by using Si...A silicon on reflector (SOR) substrate containing a thin crystal silicon layer and a buried Si/SiO 2 Bragg reflector is reported. The substrate, which is applied to optoelectronic devices, is fabricated by using Si based sol gel sticking and smart cut techniques. The reflectivity of the SOR substrate is close to unity at 1 3μm's wavelength under the normal incidence.展开更多
Dicing of fabricated MEMS (microelectromechanical system) devices is sometimes a source of challenge, especially when devices are overhanging structures. In this work, a modified cleaving technique is developed to p...Dicing of fabricated MEMS (microelectromechanical system) devices is sometimes a source of challenge, especially when devices are overhanging structures. In this work, a modified cleaving technique is developed to precisely separate fabricated devices from a silicon substrate without requiring a dicing machine. This technique is based on DRIE (deep reactive ion etching) which is regularly used to make cleaving trenches in the substrate during the releasing stage. Other similar techniques require some extra later steps or in some cases a long HF soak. To mask the etching process, a thick photoresist is used. It is shown that by applying different UV (ultraviolate) exposure and developing times for the photoresist, the DRIE process could be controlled to etch specific cleaving trenches with less depth than other patterns on the photoresist. Those cleaving trenches are used to cleave the wafer later, while the whole wafer remains as one piece until the end of the silicon etching despite some features being etched all the way through the wafer at the same time. The other steps of fabricating and releasing the devices are unaffected. The process flow is described in details and some results of applying this technique for cleaving fabricated cantilevers on a silicon substrate are presented.展开更多
We report the Meissner effect studies on an Fe Se thin film grown on Nb-doped Sr Ti O3 substrate by molecular beam epitaxy. Two-coil mutual inductance measurement clearly demonstrates the onset of diamagnetic screenin...We report the Meissner effect studies on an Fe Se thin film grown on Nb-doped Sr Ti O3 substrate by molecular beam epitaxy. Two-coil mutual inductance measurement clearly demonstrates the onset of diamagnetic screening at 65 K, which is consistent with the gap opening temperature determined by previous angle-resolved photoemission spectroscopy results. The applied magnetic field causes a broadening of the superconducting transition near the onset temperature, which is the typical behavior for quasi-two-dimensional superconductors. Our results provide direct evidence that Fe Se thin film grown on Nb-doped Sr Ti O3 substrate has an onset TC* 65 K,which is the highest among all iron-based superconductors discovered so far.展开更多
Zinc chalcogenide which includes zinc selenide,zinc sulphide,zinc telluride and mixed crystals of these shows a great potential as an optoelectronic device material. Zinc selenotelluride is a suitable material for vis...Zinc chalcogenide which includes zinc selenide,zinc sulphide,zinc telluride and mixed crystals of these shows a great potential as an optoelectronic device material. Zinc selenotelluride is a suitable material for visible light emitting devices which are expected to cover the spectral range from yellow to blue. In our present study the composition controlled ZnSe1-xTex films with different Te content x = 0,0.2,0.4,0.6,0.8 and 1.0 were deposited by electron beam (EB) evaporation technique. GaAs films were deposited by vacuum evaporation route on indium tin oxide (ITO) substrates which were used as base for depositing the ZnSe1-xTex film. The band-gap energy change in the entire composition range was determined at room temperature by photoluminescence (PL) spectroscopy. The peak observed at about 2.56 eV shows the effect of solid solution formation between ZnSe and ZnTe which modifies the lattice and consequently the band edge emission characteristics. The heterostructures showed three peaks in the visible region of white light spectrum.展开更多
文摘A silicon on reflector (SOR) substrate containing a thin crystal silicon layer and a buried Si/SiO 2 Bragg reflector is reported. The substrate, which is applied to optoelectronic devices, is fabricated by using Si based sol gel sticking and smart cut techniques. The reflectivity of the SOR substrate is close to unity at 1 3μm's wavelength under the normal incidence.
文摘Dicing of fabricated MEMS (microelectromechanical system) devices is sometimes a source of challenge, especially when devices are overhanging structures. In this work, a modified cleaving technique is developed to precisely separate fabricated devices from a silicon substrate without requiring a dicing machine. This technique is based on DRIE (deep reactive ion etching) which is regularly used to make cleaving trenches in the substrate during the releasing stage. Other similar techniques require some extra later steps or in some cases a long HF soak. To mask the etching process, a thick photoresist is used. It is shown that by applying different UV (ultraviolate) exposure and developing times for the photoresist, the DRIE process could be controlled to etch specific cleaving trenches with less depth than other patterns on the photoresist. Those cleaving trenches are used to cleave the wafer later, while the whole wafer remains as one piece until the end of the silicon etching despite some features being etched all the way through the wafer at the same time. The other steps of fabricating and releasing the devices are unaffected. The process flow is described in details and some results of applying this technique for cleaving fabricated cantilevers on a silicon substrate are presented.
基金supported by the National Natural Science Foundation and Ministry of Science and Technology of China(2015CB921000 and 2012CB921402)Yihua Wang is partially supported by the Urbanek Fellowship of the Department of Applied Physics at Stanford UniversityK.A.Moler is supported by the Department of Energy,Office of Science,Basic Energy Sciences,Materials Sciences and Engineering Division,under Contract DEAC02-76SF00515
文摘We report the Meissner effect studies on an Fe Se thin film grown on Nb-doped Sr Ti O3 substrate by molecular beam epitaxy. Two-coil mutual inductance measurement clearly demonstrates the onset of diamagnetic screening at 65 K, which is consistent with the gap opening temperature determined by previous angle-resolved photoemission spectroscopy results. The applied magnetic field causes a broadening of the superconducting transition near the onset temperature, which is the typical behavior for quasi-two-dimensional superconductors. Our results provide direct evidence that Fe Se thin film grown on Nb-doped Sr Ti O3 substrate has an onset TC* 65 K,which is the highest among all iron-based superconductors discovered so far.
文摘Zinc chalcogenide which includes zinc selenide,zinc sulphide,zinc telluride and mixed crystals of these shows a great potential as an optoelectronic device material. Zinc selenotelluride is a suitable material for visible light emitting devices which are expected to cover the spectral range from yellow to blue. In our present study the composition controlled ZnSe1-xTex films with different Te content x = 0,0.2,0.4,0.6,0.8 and 1.0 were deposited by electron beam (EB) evaporation technique. GaAs films were deposited by vacuum evaporation route on indium tin oxide (ITO) substrates which were used as base for depositing the ZnSe1-xTex film. The band-gap energy change in the entire composition range was determined at room temperature by photoluminescence (PL) spectroscopy. The peak observed at about 2.56 eV shows the effect of solid solution formation between ZnSe and ZnTe which modifies the lattice and consequently the band edge emission characteristics. The heterostructures showed three peaks in the visible region of white light spectrum.