期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于堆叠自动编码器的电力系统暂态稳定评估
被引量:
78
1
作者
朱乔木
陈金富
+3 位作者
李弘毅
石东源
李银红
段献忠
《中国电机工程学报》
EI
CSCD
北大核心
2018年第10期2937-2946,共10页
将深度学习的思想和模型引入电力系统暂态稳定评估研究中,提出一种基于堆叠自动编码器的电力系统暂态稳定评估方法。该方法无需人工计算形成输入特征,直接面向底层量测数据,通过深层架构建立量测数据与稳定类别之间的非线性映射关系...
将深度学习的思想和模型引入电力系统暂态稳定评估研究中,提出一种基于堆叠自动编码器的电力系统暂态稳定评估方法。该方法无需人工计算形成输入特征,直接面向底层量测数据,通过深层架构建立量测数据与稳定类别之间的非线性映射关系。采用一种“预训练一参数微调”的两阶段学习方法,同时引入稀疏化技术和Dropout技术对模型参数进行优化。训练后的模型能够依靠深层结构挖掘数据的隐藏模式,提取出有利于暂态稳定评估的高阶特征。此外,该方法能够通过大量无标注样本的无监督训练提高模型泛化能力,从而大大缩减训练样本时域仿真耗时。新英格兰10机39节点系统上的仿真结果表明所提方法比常规浅层评估方法的评估性能更加优越。
展开更多
关键词
深度学习
电力系统
暂态稳定评估
堆叠自动编码器
底层量测数据
下载PDF
职称材料
题名
基于堆叠自动编码器的电力系统暂态稳定评估
被引量:
78
1
作者
朱乔木
陈金富
李弘毅
石东源
李银红
段献忠
机构
强电磁工程与新技术国家重点实验室(华中科技大学电气与电子工程学院)
国网湖南省电力公司经济技术研究院
出处
《中国电机工程学报》
EI
CSCD
北大核心
2018年第10期2937-2946,共10页
文摘
将深度学习的思想和模型引入电力系统暂态稳定评估研究中,提出一种基于堆叠自动编码器的电力系统暂态稳定评估方法。该方法无需人工计算形成输入特征,直接面向底层量测数据,通过深层架构建立量测数据与稳定类别之间的非线性映射关系。采用一种“预训练一参数微调”的两阶段学习方法,同时引入稀疏化技术和Dropout技术对模型参数进行优化。训练后的模型能够依靠深层结构挖掘数据的隐藏模式,提取出有利于暂态稳定评估的高阶特征。此外,该方法能够通过大量无标注样本的无监督训练提高模型泛化能力,从而大大缩减训练样本时域仿真耗时。新英格兰10机39节点系统上的仿真结果表明所提方法比常规浅层评估方法的评估性能更加优越。
关键词
深度学习
电力系统
暂态稳定评估
堆叠自动编码器
底层量测数据
Keywords
deep learning
power system
transient stability assessment (TSA)
stacked autoencoder (SAE)
underlying measurements
分类号
TM743 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于堆叠自动编码器的电力系统暂态稳定评估
朱乔木
陈金富
李弘毅
石东源
李银红
段献忠
《中国电机工程学报》
EI
CSCD
北大核心
2018
78
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部