Seagrass habitats are structurally complex ecosystems, which support high productivity and biodiversity. In temperate systems the density of seagrass may change seasonally, and this may influence the associated fish a...Seagrass habitats are structurally complex ecosystems, which support high productivity and biodiversity. In temperate systems the density of seagrass may change seasonally, and this may influence the associated fish and invertebrate community. Little is known about the role of seagrass beds as possible nursery areas for fish and invertebrates in China. To study the functioning of a seagrass habitat in northern China, demersal fish and invertebrates were collected monthly using traps, from February 2009 to January 2010. The density, leaf length and biomass of the dominant seagrass Zostera marina and water temperature were also measured. The study was conducted in a Seagrass Natural Reserve(SNR) on the eastern coast of the Shandong Peninsula, China. A total of 22 fish species and five invertebrate species were recorded over the year. The dominant fish species were Synechogobius ommaturus, Sebastes schlegelii, Pholis fangi, Pagrus major and Hexagrammos otakii and these species accounted for 87% of the total number of fish. The dominant invertebrate species were Charybdis japonica and Octopus variabilis and these accounted for 98% of the total abundance of invertebrates. There was high temporal variation in species composition and abundance. The peak number of fish species occurred in August–October 2009, while the number of individual fish and biomass was highest during November 2009. Invertebrate numbers and biomass was highest in March, April, July and September 2009. Temporal changes in species abundance of fishes and invertebrates corresponded with changes in the shoot density and leaf length of the seagrass, Zostera marina.展开更多
An index of relative importance(IRI) was employed to screen for dominant fish in the waters surrounding the Taishan Islands, China, using data from four seasonal trawl surveys undertaken between 2012 and 2013. Niche b...An index of relative importance(IRI) was employed to screen for dominant fish in the waters surrounding the Taishan Islands, China, using data from four seasonal trawl surveys undertaken between 2012 and 2013. Niche breadth and niche overlap were measured using the Feinsinger and Morisita-Horn indices, respectively, and the characteristics and seasonal variations in the niches of dominant fish were assessed via non-metric multidimensional scaling(NMDS) and cluster analysis. A total of 80 fish species, including 16 dominant species, were recorded. Only A mblychaeturichthys hexanema was dominant in all seasons. According to niche breadth values and NMDS, the 16 dominant species were grouped into the following three types:(1) wide niche breadth species, including Cynoglossus macrolepidotus, A. hexanema, and Trypauchen vagina, among others;(2) medium niche breadth species, including Setipinna taty and Johnius belangerii; and(3) narrow niche breadth species, including A trobucca nibe and Coilia mystus. Most species with a wider niche breadth were demersal fish with a lower swimming capability and even distribution. The niche breadth of migrating fish was narrower than that of settled fish. At a given spatial scale, fish with stronger swimming capabilities had a narrower niche breadth. Niche overlap, which is associated with niche specialization, ranged from 0.000 to 0.886 and had an annual mean value of 0.314. In summer and autumn, niche overlap was relatively high within species of the Sciaenidae family and within species of the Gobiidae in autumn. Dif ferences in thermophily, feeding habits, food organism abundance/distribution and predator-prey relationships af fected the niche overlap of fish in this area. Cluster analysis revealed that species with the narrowest niche breadth and lowest niche overlap values usually displayed lower aggregation and greater distribution dif ferences compared with other species.展开更多
基金Supported by the National Basic Research Program of China(973 Program)(No.2015CB453303)the National Special Research Fund for Non-Profit Marine Sector(No.201405010-2)the Science and Technology Development Program of Shandong(No.2014GSF117003)
文摘Seagrass habitats are structurally complex ecosystems, which support high productivity and biodiversity. In temperate systems the density of seagrass may change seasonally, and this may influence the associated fish and invertebrate community. Little is known about the role of seagrass beds as possible nursery areas for fish and invertebrates in China. To study the functioning of a seagrass habitat in northern China, demersal fish and invertebrates were collected monthly using traps, from February 2009 to January 2010. The density, leaf length and biomass of the dominant seagrass Zostera marina and water temperature were also measured. The study was conducted in a Seagrass Natural Reserve(SNR) on the eastern coast of the Shandong Peninsula, China. A total of 22 fish species and five invertebrate species were recorded over the year. The dominant fish species were Synechogobius ommaturus, Sebastes schlegelii, Pholis fangi, Pagrus major and Hexagrammos otakii and these species accounted for 87% of the total number of fish. The dominant invertebrate species were Charybdis japonica and Octopus variabilis and these accounted for 98% of the total abundance of invertebrates. There was high temporal variation in species composition and abundance. The peak number of fish species occurred in August–October 2009, while the number of individual fish and biomass was highest during November 2009. Invertebrate numbers and biomass was highest in March, April, July and September 2009. Temporal changes in species abundance of fishes and invertebrates corresponded with changes in the shoot density and leaf length of the seagrass, Zostera marina.
基金Supported by the National Natural Science Foundation of China(No.41106073)the Technology R&D Program of Fujian Provincial Department of Ocean and Fisheries(No.2012013)
文摘An index of relative importance(IRI) was employed to screen for dominant fish in the waters surrounding the Taishan Islands, China, using data from four seasonal trawl surveys undertaken between 2012 and 2013. Niche breadth and niche overlap were measured using the Feinsinger and Morisita-Horn indices, respectively, and the characteristics and seasonal variations in the niches of dominant fish were assessed via non-metric multidimensional scaling(NMDS) and cluster analysis. A total of 80 fish species, including 16 dominant species, were recorded. Only A mblychaeturichthys hexanema was dominant in all seasons. According to niche breadth values and NMDS, the 16 dominant species were grouped into the following three types:(1) wide niche breadth species, including Cynoglossus macrolepidotus, A. hexanema, and Trypauchen vagina, among others;(2) medium niche breadth species, including Setipinna taty and Johnius belangerii; and(3) narrow niche breadth species, including A trobucca nibe and Coilia mystus. Most species with a wider niche breadth were demersal fish with a lower swimming capability and even distribution. The niche breadth of migrating fish was narrower than that of settled fish. At a given spatial scale, fish with stronger swimming capabilities had a narrower niche breadth. Niche overlap, which is associated with niche specialization, ranged from 0.000 to 0.886 and had an annual mean value of 0.314. In summer and autumn, niche overlap was relatively high within species of the Sciaenidae family and within species of the Gobiidae in autumn. Dif ferences in thermophily, feeding habits, food organism abundance/distribution and predator-prey relationships af fected the niche overlap of fish in this area. Cluster analysis revealed that species with the narrowest niche breadth and lowest niche overlap values usually displayed lower aggregation and greater distribution dif ferences compared with other species.