China’s coastal waters are turbid and the properties of the seabed are complex. This negatively impacts the performance of underwater detection equipment. The properties of sound absorption in turbid water are not we...China’s coastal waters are turbid and the properties of the seabed are complex. This negatively impacts the performance of underwater detection equipment. The properties of sound absorption in turbid water are not well understood. In this paper, the coefficient of sound absorption in turbid water was measured by the reverberation technique. All work was done in a reverberation barrel made of seamless aluminum. First, pure water was poured into the reverberation barrel and its reverberation time measured. Next, various concentrations of turbid water were poured into the barrel and their reverberation time measured. After all data had been gathered, the coefficient of sound absorption in turbid water of different concentrations was calculated. From this we determined a law of sound absorption in turbid water as summarized in the paper.展开更多
The critical technical problem of underwater bottom object detection is founding a stable feature space for echo signals classification. The past literatures more focus on the characteristics of object echoes in featu...The critical technical problem of underwater bottom object detection is founding a stable feature space for echo signals classification. The past literatures more focus on the characteristics of object echoes in feature space and reverberation is only treated as interference. In this paper, reverberation is considered as a kind of signal with steady characteristic, and the clustering of reverberation in frequency discrete wavelet transform (FDWT) feature space is studied. In order to extract the identifying information of echo signals, feature compression and cluster analysis are adopted in this paper, and the criterion of separability between object echoes and reverberation is given. The experimental data processing results show that reverberation has steady pattern in FDWT feature space which differs from that of object echoes. It is proven that there is separability between reverberation and object echoes.展开更多
The method of coupled mode is introduced for investigation of bi-static distant bottom reverberation of impulsive source in shallow water, which will not contradict with principle of reciprocity in all cases. And the ...The method of coupled mode is introduced for investigation of bi-static distant bottom reverberation of impulsive source in shallow water, which will not contradict with principle of reciprocity in all cases. And the method of multi-pole for directional source is also introduced. It shows that in case of layered medium, intensity of bi-static bottom reverberation will decease according to the cubic power of receiving time t, and the transverse spatial correlation of bottom reverberation is a little greater than longitudinal correlation for equal separation of receivers, and both vary in form with the receiving time.展开更多
文摘China’s coastal waters are turbid and the properties of the seabed are complex. This negatively impacts the performance of underwater detection equipment. The properties of sound absorption in turbid water are not well understood. In this paper, the coefficient of sound absorption in turbid water was measured by the reverberation technique. All work was done in a reverberation barrel made of seamless aluminum. First, pure water was poured into the reverberation barrel and its reverberation time measured. Next, various concentrations of turbid water were poured into the barrel and their reverberation time measured. After all data had been gathered, the coefficient of sound absorption in turbid water of different concentrations was calculated. From this we determined a law of sound absorption in turbid water as summarized in the paper.
基金Supported by the National Natural Science Foundation of China, under Grant No.51279033.
文摘The critical technical problem of underwater bottom object detection is founding a stable feature space for echo signals classification. The past literatures more focus on the characteristics of object echoes in feature space and reverberation is only treated as interference. In this paper, reverberation is considered as a kind of signal with steady characteristic, and the clustering of reverberation in frequency discrete wavelet transform (FDWT) feature space is studied. In order to extract the identifying information of echo signals, feature compression and cluster analysis are adopted in this paper, and the criterion of separability between object echoes and reverberation is given. The experimental data processing results show that reverberation has steady pattern in FDWT feature space which differs from that of object echoes. It is proven that there is separability between reverberation and object echoes.
文摘The method of coupled mode is introduced for investigation of bi-static distant bottom reverberation of impulsive source in shallow water, which will not contradict with principle of reciprocity in all cases. And the method of multi-pole for directional source is also introduced. It shows that in case of layered medium, intensity of bi-static bottom reverberation will decease according to the cubic power of receiving time t, and the transverse spatial correlation of bottom reverberation is a little greater than longitudinal correlation for equal separation of receivers, and both vary in form with the receiving time.