Splash zone crossing of the structures with large horizontal surface (e.g. manifolds) and the structures having large weight variation in water and air (e.g. suction anchors) is a critical marine operation. This i...Splash zone crossing of the structures with large horizontal surface (e.g. manifolds) and the structures having large weight variation in water and air (e.g. suction anchors) is a critical marine operation. This is due to the large slamming forces and added mass of the structure, which results in high dynamic loads on the crane. The solution to this could be attaching a PHC (Passive Heave Compensator) between the crane hook and the payload. This paper analyzes the deployment of a subsea manifold with and without PHC unit in North Sea at a water depth of approximately 370 m. A detailed dynamic analysis is done for a seastate of 3 m significant wave height (Hs) over a range of zero up-crossing period (Tz) varying from 3s to 13 s. For better understanding of the result analysis has been done in two stages. The first stage covers the lowering of manifold through the splash zone while second stage covers the seabed landing of the manifold. Based on the results of the analyses it is concluded that PHC tends to reduce the dynamic peak load on the crane. Besides this, it also mitigates the risk of slack wire situations during splash zone crossing of the payload. Furthermore, reduction in both landing velocity and crane tip velocity is also achieved by using a well-designed PHC unit.展开更多
Pepsin was assembled on the surface of prepared poly(ethylene terephthalate)(PET-NH3^+) substrates.The composition and structure of the pepsin/PET-NH3^+ assembling films in different condition were characterized by X-...Pepsin was assembled on the surface of prepared poly(ethylene terephthalate)(PET-NH3^+) substrates.The composition and structure of the pepsin/PET-NH3^+ assembling films in different condition were characterized by X-ray photoelectron spectroscopy(XPS) and atomic force microscopy(AFM).展开更多
Open U-shaped steel arch supports are commonly used in large-section static-pressure roadways in coal mines that are more than 900 m deep;however,it is very difficult to control floor heave of roadways.In this paper,a...Open U-shaped steel arch supports are commonly used in large-section static-pressure roadways in coal mines that are more than 900 m deep;however,it is very difficult to control floor heave of roadways.In this paper,a U-shaped steel closed support with an inverted U-shaped steel arch in the floor is proposed as a method for improving the support effect of the surrounding rock during the process of floor heaving.This research established a mechanical model for the U-shaped steel closed support,and determined the reaction forces at the connection of a camber angle.Using the limit load method calculated the critical buckling load of the inverted U-shaped steel arch,and use of a strength check method tested the strength of the U-shaped steel material.A numerical simulation was conducted using the finite difference software FLAC3 D.The simulation results show that the U-shaped steel closed support is able to control the floor heave of roadways,which is successfully used in the West 11-2 development roadway of the Zhuji Mine in the Huainan mining area in China.The cumulative floor heave over two years was less than50 mm.展开更多
Submarine landslides occur frequently on most continental margins. They are effective mechanisms of sediment transfer but also a geological hazard to seafloor installations. In this paper, submarine slope stability is...Submarine landslides occur frequently on most continental margins. They are effective mechanisms of sediment transfer but also a geological hazard to seafloor installations. In this paper, submarine slope stability is evaluated using a 2D limit equilibrium method. Considerations of slope, sediment, and triggering force on the factor of safety (FOS) were calculated in drained and undrained (4=0) cases. Results show that submarine slopes are stable when the slope is 〈16° under static conditions and without a weak interlayer. With a weak interlayer, slopes are stable at 〈18° in the drained case and at 〈9° in the undrained case. Earthquake loading can drastically reduce the shear strength of sediment with increased pore water pressure. The slope became unstable at 〉13° with earthquake peak ground acceleration (PGA) of 0.5 g; whereas with a weak layer, a PGA of 0.2 g could trigger instability at slopes 〉 10°, and 〉3 ° for PGA of 0.5 g. The northern slope of the South China Sea is geomorphologically stable under static conditions. However, because of the possibility of high PGA at the eastern margin of the South China Sea, submarine slides are likely on the Taiwan Bank slope and eastern part of the Dongsha slope. Therefore, submarine slides recognized in seismic profiles on the Taiwan Bank slope would be triggered by an earthquake, the most important factor for triggering submarine slides on the northern slope of the South China Sea. Considering the distribution of PGA, we consider the northern slope of the South China Sea to be stable, excluding the Taiwan Bank slope, which is tectonically active.展开更多
Huntsman Lake is located within the Middle Run of the Pohick Creek watershed, which is itself located within the much larger Chesapeake Bay watershed. Data collected from both the water column and the lake's sediment...Huntsman Lake is located within the Middle Run of the Pohick Creek watershed, which is itself located within the much larger Chesapeake Bay watershed. Data collected from both the water column and the lake's sediments indicate that phosphorus-rich bottom sediments are an important internal loading source, and these internal phosphorus loads would continue to adversely impact water quality until and unless sediments are removed or inactivated. The implementation of artificial circulation was anticipated to be able to increase the sequestration of phosphorus within better oxygenated bottom sediments, and was the first lake management strategy deployed in Huntsman Lake. In the first two years after the installation of a whole-lake circulation system, the lake's waters are no longer stratified, and the bottom waters are no longer hypoxic and/or anoxic. While there is no evidence of a subsequent reduction in concentrations of nitrogen or chlorophyll-a, average phosphorus concentrations have decreased. However, high variability in the phosphorus data decreases our confidence that this is a sustained improvement. These results are consistent with prior findings, including those from downstream systems, that the reversal of the symptoms of eutrophication can involve lag-periods up to several years, if they are successful at all.展开更多
Finite element method(FEM) was used to investigate the effect of the number of layers on the bond strength for the brittle coating/substrate materials at contact load condition,which has not been addressed previously....Finite element method(FEM) was used to investigate the effect of the number of layers on the bond strength for the brittle coating/substrate materials at contact load condition,which has not been addressed previously.The maximum shear stress was used to act as the criterion of the bonded strength.This paper discussed the relationship between the number of coating layers and the maximum shear stress of the layer/substrate interface.Firstly,the results of the FEM and the Hertz analytical method were compared to verify the accuracy of the FEM model.It was found that with the increase in the number of coating layers,the position of the suddenly changed stress along the z axis is transformed from the interface to the external surface of the coating.Finally,the increase in the number of layers contributes to the decrement of the stress along the x axis.展开更多
The organic single-crystal field-effect transistors using anthracene derivative, H-Ant as an active layer with source/drain electrodes decorated by metal charge transfer salt(Cu TCNQ) were fabricated. We demonstrated ...The organic single-crystal field-effect transistors using anthracene derivative, H-Ant as an active layer with source/drain electrodes decorated by metal charge transfer salt(Cu TCNQ) were fabricated. We demonstrated that this bottom-contact structure displayed an obvious improvement in the electrical characteristics relative to their pristine copper and top-contact gold electrode counterparts. This observation could be ascribed to the lower contact resistance resulting from the energetic match between electrodes and semiconductor.展开更多
文摘Splash zone crossing of the structures with large horizontal surface (e.g. manifolds) and the structures having large weight variation in water and air (e.g. suction anchors) is a critical marine operation. This is due to the large slamming forces and added mass of the structure, which results in high dynamic loads on the crane. The solution to this could be attaching a PHC (Passive Heave Compensator) between the crane hook and the payload. This paper analyzes the deployment of a subsea manifold with and without PHC unit in North Sea at a water depth of approximately 370 m. A detailed dynamic analysis is done for a seastate of 3 m significant wave height (Hs) over a range of zero up-crossing period (Tz) varying from 3s to 13 s. For better understanding of the result analysis has been done in two stages. The first stage covers the lowering of manifold through the splash zone while second stage covers the seabed landing of the manifold. Based on the results of the analyses it is concluded that PHC tends to reduce the dynamic peak load on the crane. Besides this, it also mitigates the risk of slack wire situations during splash zone crossing of the payload. Furthermore, reduction in both landing velocity and crane tip velocity is also achieved by using a well-designed PHC unit.
文摘Pepsin was assembled on the surface of prepared poly(ethylene terephthalate)(PET-NH3^+) substrates.The composition and structure of the pepsin/PET-NH3^+ assembling films in different condition were characterized by X-ray photoelectron spectroscopy(XPS) and atomic force microscopy(AFM).
基金provided by the National Natural Science Foundation of China(No.51404256)the National Basic Research Program of China(No.2013CB227900)Fundamental Research Funds for the Central Universities of China(No. 2014QNA51)
文摘Open U-shaped steel arch supports are commonly used in large-section static-pressure roadways in coal mines that are more than 900 m deep;however,it is very difficult to control floor heave of roadways.In this paper,a U-shaped steel closed support with an inverted U-shaped steel arch in the floor is proposed as a method for improving the support effect of the surrounding rock during the process of floor heaving.This research established a mechanical model for the U-shaped steel closed support,and determined the reaction forces at the connection of a camber angle.Using the limit load method calculated the critical buckling load of the inverted U-shaped steel arch,and use of a strength check method tested the strength of the U-shaped steel material.A numerical simulation was conducted using the finite difference software FLAC3 D.The simulation results show that the U-shaped steel closed support is able to control the floor heave of roadways,which is successfully used in the West 11-2 development roadway of the Zhuji Mine in the Huainan mining area in China.The cumulative floor heave over two years was less than50 mm.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2007CB411702)
文摘Submarine landslides occur frequently on most continental margins. They are effective mechanisms of sediment transfer but also a geological hazard to seafloor installations. In this paper, submarine slope stability is evaluated using a 2D limit equilibrium method. Considerations of slope, sediment, and triggering force on the factor of safety (FOS) were calculated in drained and undrained (4=0) cases. Results show that submarine slopes are stable when the slope is 〈16° under static conditions and without a weak interlayer. With a weak interlayer, slopes are stable at 〈18° in the drained case and at 〈9° in the undrained case. Earthquake loading can drastically reduce the shear strength of sediment with increased pore water pressure. The slope became unstable at 〉13° with earthquake peak ground acceleration (PGA) of 0.5 g; whereas with a weak layer, a PGA of 0.2 g could trigger instability at slopes 〉 10°, and 〉3 ° for PGA of 0.5 g. The northern slope of the South China Sea is geomorphologically stable under static conditions. However, because of the possibility of high PGA at the eastern margin of the South China Sea, submarine slides are likely on the Taiwan Bank slope and eastern part of the Dongsha slope. Therefore, submarine slides recognized in seismic profiles on the Taiwan Bank slope would be triggered by an earthquake, the most important factor for triggering submarine slides on the northern slope of the South China Sea. Considering the distribution of PGA, we consider the northern slope of the South China Sea to be stable, excluding the Taiwan Bank slope, which is tectonically active.
文摘Huntsman Lake is located within the Middle Run of the Pohick Creek watershed, which is itself located within the much larger Chesapeake Bay watershed. Data collected from both the water column and the lake's sediments indicate that phosphorus-rich bottom sediments are an important internal loading source, and these internal phosphorus loads would continue to adversely impact water quality until and unless sediments are removed or inactivated. The implementation of artificial circulation was anticipated to be able to increase the sequestration of phosphorus within better oxygenated bottom sediments, and was the first lake management strategy deployed in Huntsman Lake. In the first two years after the installation of a whole-lake circulation system, the lake's waters are no longer stratified, and the bottom waters are no longer hypoxic and/or anoxic. While there is no evidence of a subsequent reduction in concentrations of nitrogen or chlorophyll-a, average phosphorus concentrations have decreased. However, high variability in the phosphorus data decreases our confidence that this is a sustained improvement. These results are consistent with prior findings, including those from downstream systems, that the reversal of the symptoms of eutrophication can involve lag-periods up to several years, if they are successful at all.
基金supported by the National Natural Science Foundation of China (Grant No. 51005102)Postdoctoral Science Foundation of Jiangsu Province (Grant No. 1002028C)+1 种基金Postdoctoral Science Foundation of China (Grant No. 20110491366)the State Key Laboratory of Tribology of Tsinghua University (Grant No. SKLTKF10B04)
文摘Finite element method(FEM) was used to investigate the effect of the number of layers on the bond strength for the brittle coating/substrate materials at contact load condition,which has not been addressed previously.The maximum shear stress was used to act as the criterion of the bonded strength.This paper discussed the relationship between the number of coating layers and the maximum shear stress of the layer/substrate interface.Firstly,the results of the FEM and the Hertz analytical method were compared to verify the accuracy of the FEM model.It was found that with the increase in the number of coating layers,the position of the suddenly changed stress along the z axis is transformed from the interface to the external surface of the coating.Finally,the increase in the number of layers contributes to the decrement of the stress along the x axis.
基金supported by the National Natural Science Foundation of China(20721061,51033006,51003107,91027043)the China-Denmark Co-project,TRR61(NSFC-DFG Transregio Project)the National Basic Research Program of China(2011CB808400,2011CB932300,2009CB930400)and Chinese Academy of Sciences
文摘The organic single-crystal field-effect transistors using anthracene derivative, H-Ant as an active layer with source/drain electrodes decorated by metal charge transfer salt(Cu TCNQ) were fabricated. We demonstrated that this bottom-contact structure displayed an obvious improvement in the electrical characteristics relative to their pristine copper and top-contact gold electrode counterparts. This observation could be ascribed to the lower contact resistance resulting from the energetic match between electrodes and semiconductor.