The SET mechanism between chlorine dioxide (ClO2) and phenol was studied by using ab initio method at 4-31G* level. Geometries of the reactants, intermediate and products of the reaction were optimized and the singl...The SET mechanism between chlorine dioxide (ClO2) and phenol was studied by using ab initio method at 4-31G* level. Geometries of the reactants, intermediate and products of the reaction were optimized and the single point energy calculations of the species were performed. The relative structure data of the reactants, intermediate and products are given.The SET mechanism between ClO2and phenol was confirmed by ab initio calculations. The reaction is exothermic about 200 88 kJ/mol.展开更多
The enhanced biological phosphorus removal (EBPR) method is widely adopted for phosphorus removal from wastewater, yet little is known about its microbiological and molecular mechanisms. Therefore, it is difficult t...The enhanced biological phosphorus removal (EBPR) method is widely adopted for phosphorus removal from wastewater, yet little is known about its microbiological and molecular mechanisms. Therefore, it is difficult to predict and control the deterioration of the EBPR process in a large-scale municipal sewage treatment plant. This study used a novel strain isolated in the laboratory, Pseudomonas putida GM6, which had a high phosphate accumulating ability and could recover rapidly from the deteriorated system and enhance the capability of phosphorus removal in activated sludge. Strain GM6 marked with gfp gene, which was called GMTR, was delivered into a bench-scale sequencing batch reactor (SBR) of low efficiency, to investigate the colonization of GMTR and removal of phosphorus. After 21 days, the proportion of GMTR in the total bacteria of the sludge reached 9.2%, whereas the phosphorus removal rate was 96%, with an effluent concentration of about 0.2 mg L^-1. In the reactor with the addition of GMTR, phosphorus was removed quickly, in 1 h under anaerobic conditions, and in 2 h under aerobic conditions. These evidences were characteristic of EBPR processes. Field testing was conducted at a hospital sewage treatment facility with low phosphorus removal capability. Twentyone days after Pseudomonas putida GM6 was added, effluent phosphorus concentration remained around 0.3 mg L^-1, corresponding to a removal rate of 96.8%. It was therefore demonstrated that Pseudomonas putida GM6 could be used for a quick startup and enhancement of wastewater biological phosphorus removal, which provided a scientific basis for potential large-scale engineering application.展开更多
Biofilm-associated microorganisms play crucial roles in terrestrial and aquatic nutrient cycling and in the biodegradation of environmental pollutants. Biofilm formation was determined for a total of 18 bacterial isol...Biofilm-associated microorganisms play crucial roles in terrestrial and aquatic nutrient cycling and in the biodegradation of environmental pollutants. Biofilm formation was determined for a total of 18 bacterial isolates obtained from the biofilms of wastewater treatment systems and of little carpolite in soil. Among these isolates, seven showed strong biofilm-forming capacity. The phylogenetic affiliation of the isolates showing high biofilm formation capacity was determined through 16S rDNA sequencing and the isolates were grouped into 7 bacterial species including Pseudornonas sp., Pseudomonas putida, Aeromonas caviae, Bacillus cereus, Pseudornonas plecoglossicida, Aeromonas hydrophila, and Comamonas testosteroni. The biofilm-forming capacity was closely related with flagella, exopolysaccharide, and extracellular protein. According to the coefficient of determination, the relative importance of the five biological characteristics to biofilm formation was, in order from greatest to least, exopolysaccharide 〉 flagella 〉 N-acyl-homoserine lactones (AHLs) signaling molecules 〉 extracellular protein 〉 swarming motility.展开更多
In this work,rhamnolipid production was investigated using waste frying oil as the sole carbon source. By culture in shaking flasks,a naturally isolated strain synthesized rhamnolipid at concentration of 12.47 g/L and...In this work,rhamnolipid production was investigated using waste frying oil as the sole carbon source. By culture in shaking flasks,a naturally isolated strain synthesized rhamnolipid at concentration of 12.47 g/L and its mutant after treatment by UV light increased this productivity to 24.61 g/L. Fermentation was also conducted in a 50 L bioreactor and the productivity reached over 20 g/L. Hence,with a stable and high productive mutant strain,it could be feasible to reuse waste frying oil for rhamnolipid production on industrial scale.展开更多
Chitosan derived from crab shells, was used to prepare the graft polymer in aqueous solution with acrylamide (AM) and methacrylatoethyl trimethyl ammonium chloride (DMC) as raw materials and ceric ammonium nitrate...Chitosan derived from crab shells, was used to prepare the graft polymer in aqueous solution with acrylamide (AM) and methacrylatoethyl trimethyl ammonium chloride (DMC) as raw materials and ceric ammonium nitrate (CAN) as initiator. The flocculation ability of the resulting polymer (PCAD) was studied in waste water treatment experiments. Its properties were determined on the basis of the transmittance of waste water after flocculation. The effects of ehitosan and DMC content on PCAD's flocculation ability were studied. Floeculation experiments were also undertaken under various pH conditions. According to the experimental data, the flocculation ability could be improved when chitosan content decreased in the raw material, but the monomer conversion would decrease obviously. When the ehitosan's content was more than 65%, AM and DMC groups were less on each chitosan molecule. So PCAD's flocculation ability was poor. Similarly, high content of DMC would result in low monomer conversion and high flocculation ability. PCAD molecules with more DMC group had more positive charges. It was favorable to flocculation. However, monomer conversion would decrease with the increase of DMC content. The suitable conditions were that chitosan and DMC contents were 65% and 15-20%, respectively. The experiment data showed that PCAD had good flocculation ability under weak acidic condition. Its ability would be weakened by strong acidic or alkaline condition. The flocculation efficiency was the best at pH of 5.5 when PCAD's dosage was 8mg-Lk Compared with cationic polymer (the copolymer of AM and DMC, PAD), PCAD showed better flocculation ability under acid and neutral conditions, but worse ability under alkaline condition.展开更多
The effluents of textile dyes are highly colored, and disposal of the wastes into receiving waters cause damage to the environment, therefore dyes removal is of great importance. In this research, removal of Orange II...The effluents of textile dyes are highly colored, and disposal of the wastes into receiving waters cause damage to the environment, therefore dyes removal is of great importance. In this research, removal of Orange II, Remazol Blue, Methyl red, Malachite green and Safranin dyes by Pseudomonas fluorescens was studied in batch system as function of temperature, pH and initial dye concentration. The rate of removal dyes was studied by using pectrophotometer. The optimum value was determined as pH 7 for all dyes tested about 87.8-72.7%, and optimum temperature for removal of all tested dyes was 30℃ about 86.6-60.8%. Higher removal of dyes observed at 25 mL for all tested dyes about 91.9-72,7%. In general, the increase in dye concentration inhibited the growth of bacteria. Pseudomonasfluorescens showed higher removal of Orange II among the dyes tested.展开更多
A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm wa...A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm was coupled with a surrogate model to optimize the geometry of the single-channel pump volute. Steady and unsteady Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized using finite volume approximations and were then solved on tetrahedral grids to analyze the flow in the single-channel pump. The three objective functions represented the total efficiency, the sweep area of the radial force during one revolution, and the distance of the mass center of sweep area from the origin while the two design variables were related to the cross-sectional area of the internal flow of the volute. Latin hypercube sampling was employed to generate twelve design points within the design space, and response surface approximation models were constructed as surrogate models for the objectives based on the values of the objective function at the given design points. A fast non-dominated sorting genetic algorithm for local search was coupled with the surrogate models to determine the global Pareto-optimal solutions. The trade-off between the objectives was determined and was described in terms of the Pareto-optimal solutions. The results of the multi-objective optimization showed that the optimum design simultaneously improved the efficiency and reduced the radial force relative to those of the reference design.展开更多
Many studies have considered the solution of Unit Commitment problems for the management of energy networks. In this field, earlier work addressed the problem in determinist cases and in cases dealing with demand unce...Many studies have considered the solution of Unit Commitment problems for the management of energy networks. In this field, earlier work addressed the problem in determinist cases and in cases dealing with demand uncertainties. In this paper, the authors develop a method to deal with uncertainties related to the cost function. Indeed, such uncertainties often occur in energy networks (waste incinerator with a priori unknown waste amounts, cogeneration plant with uncertainty of the sold electricity price...). The corresponding optimization problems are large scale stochastic non-linear mixed integer problems. The developed solution method is a recourse based programming one. The main idea is to consider that amounts of energy to produce can be slightly adapted in real time, whereas the on/off statuses of units have to be decided very early in the management procedure. Results show that the proposed approach remains compatible with existing Unit Commitment programming methods and presents an obvious interest with reasonable computing loads.展开更多
文摘The SET mechanism between chlorine dioxide (ClO2) and phenol was studied by using ab initio method at 4-31G* level. Geometries of the reactants, intermediate and products of the reaction were optimized and the single point energy calculations of the species were performed. The relative structure data of the reactants, intermediate and products are given.The SET mechanism between ClO2and phenol was confirmed by ab initio calculations. The reaction is exothermic about 200 88 kJ/mol.
基金Project supported by the National Natural Science Foundation of China (Nos.30500010 and 50308011).
文摘The enhanced biological phosphorus removal (EBPR) method is widely adopted for phosphorus removal from wastewater, yet little is known about its microbiological and molecular mechanisms. Therefore, it is difficult to predict and control the deterioration of the EBPR process in a large-scale municipal sewage treatment plant. This study used a novel strain isolated in the laboratory, Pseudomonas putida GM6, which had a high phosphate accumulating ability and could recover rapidly from the deteriorated system and enhance the capability of phosphorus removal in activated sludge. Strain GM6 marked with gfp gene, which was called GMTR, was delivered into a bench-scale sequencing batch reactor (SBR) of low efficiency, to investigate the colonization of GMTR and removal of phosphorus. After 21 days, the proportion of GMTR in the total bacteria of the sludge reached 9.2%, whereas the phosphorus removal rate was 96%, with an effluent concentration of about 0.2 mg L^-1. In the reactor with the addition of GMTR, phosphorus was removed quickly, in 1 h under anaerobic conditions, and in 2 h under aerobic conditions. These evidences were characteristic of EBPR processes. Field testing was conducted at a hospital sewage treatment facility with low phosphorus removal capability. Twentyone days after Pseudomonas putida GM6 was added, effluent phosphorus concentration remained around 0.3 mg L^-1, corresponding to a removal rate of 96.8%. It was therefore demonstrated that Pseudomonas putida GM6 could be used for a quick startup and enhancement of wastewater biological phosphorus removal, which provided a scientific basis for potential large-scale engineering application.
基金supported by the National Natural Science Foundation of China (No.30600016)the Environment Protection Department of Jiangsu Province,China (No.2004007)
文摘Biofilm-associated microorganisms play crucial roles in terrestrial and aquatic nutrient cycling and in the biodegradation of environmental pollutants. Biofilm formation was determined for a total of 18 bacterial isolates obtained from the biofilms of wastewater treatment systems and of little carpolite in soil. Among these isolates, seven showed strong biofilm-forming capacity. The phylogenetic affiliation of the isolates showing high biofilm formation capacity was determined through 16S rDNA sequencing and the isolates were grouped into 7 bacterial species including Pseudornonas sp., Pseudomonas putida, Aeromonas caviae, Bacillus cereus, Pseudornonas plecoglossicida, Aeromonas hydrophila, and Comamonas testosteroni. The biofilm-forming capacity was closely related with flagella, exopolysaccharide, and extracellular protein. According to the coefficient of determination, the relative importance of the five biological characteristics to biofilm formation was, in order from greatest to least, exopolysaccharide 〉 flagella 〉 N-acyl-homoserine lactones (AHLs) signaling molecules 〉 extracellular protein 〉 swarming motility.
基金Project (No. 2006C100105) supported by the Ningbo Scientific Research Project, China
文摘In this work,rhamnolipid production was investigated using waste frying oil as the sole carbon source. By culture in shaking flasks,a naturally isolated strain synthesized rhamnolipid at concentration of 12.47 g/L and its mutant after treatment by UV light increased this productivity to 24.61 g/L. Fermentation was also conducted in a 50 L bioreactor and the productivity reached over 20 g/L. Hence,with a stable and high productive mutant strain,it could be feasible to reuse waste frying oil for rhamnolipid production on industrial scale.
基金supported by Young Scientist Foundation (2008BS09001) from the Department of Science and Technology of Shandong Province
文摘Chitosan derived from crab shells, was used to prepare the graft polymer in aqueous solution with acrylamide (AM) and methacrylatoethyl trimethyl ammonium chloride (DMC) as raw materials and ceric ammonium nitrate (CAN) as initiator. The flocculation ability of the resulting polymer (PCAD) was studied in waste water treatment experiments. Its properties were determined on the basis of the transmittance of waste water after flocculation. The effects of ehitosan and DMC content on PCAD's flocculation ability were studied. Floeculation experiments were also undertaken under various pH conditions. According to the experimental data, the flocculation ability could be improved when chitosan content decreased in the raw material, but the monomer conversion would decrease obviously. When the ehitosan's content was more than 65%, AM and DMC groups were less on each chitosan molecule. So PCAD's flocculation ability was poor. Similarly, high content of DMC would result in low monomer conversion and high flocculation ability. PCAD molecules with more DMC group had more positive charges. It was favorable to flocculation. However, monomer conversion would decrease with the increase of DMC content. The suitable conditions were that chitosan and DMC contents were 65% and 15-20%, respectively. The experiment data showed that PCAD had good flocculation ability under weak acidic condition. Its ability would be weakened by strong acidic or alkaline condition. The flocculation efficiency was the best at pH of 5.5 when PCAD's dosage was 8mg-Lk Compared with cationic polymer (the copolymer of AM and DMC, PAD), PCAD showed better flocculation ability under acid and neutral conditions, but worse ability under alkaline condition.
文摘The effluents of textile dyes are highly colored, and disposal of the wastes into receiving waters cause damage to the environment, therefore dyes removal is of great importance. In this research, removal of Orange II, Remazol Blue, Methyl red, Malachite green and Safranin dyes by Pseudomonas fluorescens was studied in batch system as function of temperature, pH and initial dye concentration. The rate of removal dyes was studied by using pectrophotometer. The optimum value was determined as pH 7 for all dyes tested about 87.8-72.7%, and optimum temperature for removal of all tested dyes was 30℃ about 86.6-60.8%. Higher removal of dyes observed at 25 mL for all tested dyes about 91.9-72,7%. In general, the increase in dye concentration inhibited the growth of bacteria. Pseudomonasfluorescens showed higher removal of Orange II among the dyes tested.
文摘A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm was coupled with a surrogate model to optimize the geometry of the single-channel pump volute. Steady and unsteady Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized using finite volume approximations and were then solved on tetrahedral grids to analyze the flow in the single-channel pump. The three objective functions represented the total efficiency, the sweep area of the radial force during one revolution, and the distance of the mass center of sweep area from the origin while the two design variables were related to the cross-sectional area of the internal flow of the volute. Latin hypercube sampling was employed to generate twelve design points within the design space, and response surface approximation models were constructed as surrogate models for the objectives based on the values of the objective function at the given design points. A fast non-dominated sorting genetic algorithm for local search was coupled with the surrogate models to determine the global Pareto-optimal solutions. The trade-off between the objectives was determined and was described in terms of the Pareto-optimal solutions. The results of the multi-objective optimization showed that the optimum design simultaneously improved the efficiency and reduced the radial force relative to those of the reference design.
文摘Many studies have considered the solution of Unit Commitment problems for the management of energy networks. In this field, earlier work addressed the problem in determinist cases and in cases dealing with demand uncertainties. In this paper, the authors develop a method to deal with uncertainties related to the cost function. Indeed, such uncertainties often occur in energy networks (waste incinerator with a priori unknown waste amounts, cogeneration plant with uncertainty of the sold electricity price...). The corresponding optimization problems are large scale stochastic non-linear mixed integer problems. The developed solution method is a recourse based programming one. The main idea is to consider that amounts of energy to produce can be slightly adapted in real time, whereas the on/off statuses of units have to be decided very early in the management procedure. Results show that the proposed approach remains compatible with existing Unit Commitment programming methods and presents an obvious interest with reasonable computing loads.