The experimental process of preparing TiO 2 activated carbon complex membranes with activated carbon powder as main carrier, PTFE as binder and wire netting as matrix is described in detail, and both photo catalysis a...The experimental process of preparing TiO 2 activated carbon complex membranes with activated carbon powder as main carrier, PTFE as binder and wire netting as matrix is described in detail, and both photo catalysis and photo electro catalysis are measured to study the properties of complex membranes. Experimental results show that the photo catalytic activity of the membranes is high and stable in the process of treating Rhodamine B; the application of an electric field accelerates the speed of photo catalysis, and the efficiency of photo catalysis is increased 2.5 times when the applied voltage is 0.8 V; and the degradation of Rhodamine B follows the dynamics of first order reaction. It is concluded from the discussion of experimental results that the preparation process of TiO 2 activated carbon complex membranes is a simple low cost process suitable for large scale application.展开更多
The feasibility of photocatalytic degradation of the formaldehyde gas by titanium dioxide (TiO2)/polyester non-woven fabrics was studied. Tbe effects of parameters such as tbe concentration of TiO2 solution, pH valu...The feasibility of photocatalytic degradation of the formaldehyde gas by titanium dioxide (TiO2)/polyester non-woven fabrics was studied. Tbe effects of parameters such as tbe concentration of TiO2 solution, pH value, and drying temperature on the photocatalytic degradation of the formaldehyde gas were also studied. The results showed that the photodegradation efficiency of the formaldehyde gas increased rapidly with the increasing of the concentration of TiO2 solution up to 15g/L, but when the concentration was in excess of 15g/L, the photodegradation efficiency decreased gradually and fluctuated due to light obstruction and disperse state of TiO2. Adjusting the pH value in the solution, the efficiency of photocatalytic degradation of the formaldehyde gas could be improved. The mechanisms of the reaction and the role of the additives were also investigated. After 42hours, TiO2/ polyester non-woven fabric showed no significant loss of the photocatalytic activity.展开更多
文摘The experimental process of preparing TiO 2 activated carbon complex membranes with activated carbon powder as main carrier, PTFE as binder and wire netting as matrix is described in detail, and both photo catalysis and photo electro catalysis are measured to study the properties of complex membranes. Experimental results show that the photo catalytic activity of the membranes is high and stable in the process of treating Rhodamine B; the application of an electric field accelerates the speed of photo catalysis, and the efficiency of photo catalysis is increased 2.5 times when the applied voltage is 0.8 V; and the degradation of Rhodamine B follows the dynamics of first order reaction. It is concluded from the discussion of experimental results that the preparation process of TiO 2 activated carbon complex membranes is a simple low cost process suitable for large scale application.
文摘The feasibility of photocatalytic degradation of the formaldehyde gas by titanium dioxide (TiO2)/polyester non-woven fabrics was studied. Tbe effects of parameters such as tbe concentration of TiO2 solution, pH value, and drying temperature on the photocatalytic degradation of the formaldehyde gas were also studied. The results showed that the photodegradation efficiency of the formaldehyde gas increased rapidly with the increasing of the concentration of TiO2 solution up to 15g/L, but when the concentration was in excess of 15g/L, the photodegradation efficiency decreased gradually and fluctuated due to light obstruction and disperse state of TiO2. Adjusting the pH value in the solution, the efficiency of photocatalytic degradation of the formaldehyde gas could be improved. The mechanisms of the reaction and the role of the additives were also investigated. After 42hours, TiO2/ polyester non-woven fabric showed no significant loss of the photocatalytic activity.