The catalytic combustion technology for treating waste gases exiting from wastewater treatment system and oil separators in petrochemical enterprises was introduced in this article. Commercial application of this tech...The catalytic combustion technology for treating waste gases exiting from wastewater treatment system and oil separators in petrochemical enterprises was introduced in this article. Commercial application of this technology showed that the process "desulfurization and total hydrocarbon concentration homogenizationcatalytic combustion" and the associated WSH-1 combustion catalyst were suitable for treating volatile organic gases emitted from the oil separators, floatation tanks, inlet water-collecting well, waste oil tanks, etc. The commercial unit was equipped with an advanced auto-control system, featuring a simple operation and low energy consumption with good treatment effect. The purified gases could meet the national emission standard.展开更多
The paper presents a procedure to design water network. First of all, water reuse system, water regeneration reuse system (including regeneration recycle) and wastewater treatment system are designed separately. But t...The paper presents a procedure to design water network. First of all, water reuse system, water regeneration reuse system (including regeneration recycle) and wastewater treatment system are designed separately. But the interaction between different parts demands that each part is designed iteratively to optimize the whole water network. Therefore, on the basis of the separated design a water netvrork superstructure including reuse, regeneration and wastewater treatment is established from the system engineering point of view. And a multi-objective adaptive simulated annealing genetic algorithm is adopted to simultaneously integrate the overall water netvrork to balance the economic and environmental effects. The algorithm overcomes the defect of local optimum of simulated annealing (SA), avoids the pre-maturation of genetic algorithm (GA) and finds a set of solutions (pareto front) in acceptable computer time. Prom the pareto front, a point with minimum fresh water consumption will be extended to zero discharge as our ultimate goal.展开更多
A new type of membrane bioreactor named 'airliftmembrane-bioreactor' is discussed. For municipal wastewaterreclamation, the preliminary study on airlift membrane-bioreactorshows its good performance such as hi...A new type of membrane bioreactor named 'airliftmembrane-bioreactor' is discussed. For municipal wastewaterreclamation, the preliminary study on airlift membrane-bioreactorshows its good performance such as higher flux and lower energyconsumption. The airlift membrane-bioreactor is potentiallyapplicable in bioengineer- ing and environmental protection fields.展开更多
There are many factors affecting the performance of a treatment system especially in the treatment of palm oil mill effluent (POME) as its contains high amounts of suspended solid, low pH, high salt content and high...There are many factors affecting the performance of a treatment system especially in the treatment of palm oil mill effluent (POME) as its contains high amounts of suspended solid, low pH, high salt content and high chemical oxygen demand (COD). However, one factor at a time approach is complicated method in establishing relationship between multiple parameters. Response surface methodology (RSM) is a recommended approach as it is widely used to analyze and study the interactions between multiple parameters and provides optimum output as well as minimizing the defects which result in good treatment system. This paper overviews the recent and current research in the application of RSM in optimizing the treatment development of POME.展开更多
The spherical macroporous cellulose(SMC) was fabricated using medical absorbent cotton as raw material and nano CaCO3 as porogenic agents.And then,the phenylglycine was grafted onto the SMC to obtain the novel spheric...The spherical macroporous cellulose(SMC) was fabricated using medical absorbent cotton as raw material and nano CaCO3 as porogenic agents.And then,the phenylglycine was grafted onto the SMC to obtain the novel spherical macroporous cellulose derivative adsorbent(PSMC).FT-IR and scanning electron microscope(SEM) were employed to characterize the adsorbents and Fe3+ ions served as model solute to evaluate the adsorption property of the adsorbents.The experimental results show that the amount of porogenic agents and the value of pH have obvious influence on adsorption capacity of the adsorbents.The data of adsorption kinetic and isotherm display that the adsorbents possess excellent equilibrium adsorption capacity(348.94 mg/g) and have a bright prospect and considerable potential in the treatment of Fe3+ ions in wastewater.展开更多
Bio-fuel can be used to help transition from a petroleum-based society to a bio-based society. Ever since the China Development and Reform Commission suspended the approval of crop processing programs, second-generati...Bio-fuel can be used to help transition from a petroleum-based society to a bio-based society. Ever since the China Development and Reform Commission suspended the approval of crop processing programs, second-generation bio-ethanol research and industrialization processes have attracted significant attention. In 2020, bio-ethanol production is predicted to reach 10 million tons. Currently, there are a few domestic enterprises that have established different scaled pilot or demonstration bases for cellulosic ethanol, which reduce the cost of ethanol by continuously improving pretreatment and hydrolysis techniques. In the next three years, these enterprises will realize large-scale commercial production. Given the practical problems in cellulosic ethanol plant construction and operation(e.g., marketing price variation and difficulties in feedstock collection), this paper began with the concept of a "whole-crop refinery" and presented a solution to the integration of industry and agriculture as well as multi-crop refining. This paper then took the whole-crop refining system of corn as an example and presented an analysis of the logistics, energy flow, and economical efficiency of the system. The results demonstrated that the integrated system could properly reduce the required fixed investments in production equipment,shared utilities, and wastewater treatment facilities, as well as reduction of energy consumption. Although the proposed system has several problems, it brings the long-term goal of large-scale commercial application closer than ever.展开更多
文摘The catalytic combustion technology for treating waste gases exiting from wastewater treatment system and oil separators in petrochemical enterprises was introduced in this article. Commercial application of this technology showed that the process "desulfurization and total hydrocarbon concentration homogenizationcatalytic combustion" and the associated WSH-1 combustion catalyst were suitable for treating volatile organic gases emitted from the oil separators, floatation tanks, inlet water-collecting well, waste oil tanks, etc. The commercial unit was equipped with an advanced auto-control system, featuring a simple operation and low energy consumption with good treatment effect. The purified gases could meet the national emission standard.
文摘The paper presents a procedure to design water network. First of all, water reuse system, water regeneration reuse system (including regeneration recycle) and wastewater treatment system are designed separately. But the interaction between different parts demands that each part is designed iteratively to optimize the whole water network. Therefore, on the basis of the separated design a water netvrork superstructure including reuse, regeneration and wastewater treatment is established from the system engineering point of view. And a multi-objective adaptive simulated annealing genetic algorithm is adopted to simultaneously integrate the overall water netvrork to balance the economic and environmental effects. The algorithm overcomes the defect of local optimum of simulated annealing (SA), avoids the pre-maturation of genetic algorithm (GA) and finds a set of solutions (pareto front) in acceptable computer time. Prom the pareto front, a point with minimum fresh water consumption will be extended to zero discharge as our ultimate goal.
文摘A new type of membrane bioreactor named 'airliftmembrane-bioreactor' is discussed. For municipal wastewaterreclamation, the preliminary study on airlift membrane-bioreactorshows its good performance such as higher flux and lower energyconsumption. The airlift membrane-bioreactor is potentiallyapplicable in bioengineer- ing and environmental protection fields.
文摘There are many factors affecting the performance of a treatment system especially in the treatment of palm oil mill effluent (POME) as its contains high amounts of suspended solid, low pH, high salt content and high chemical oxygen demand (COD). However, one factor at a time approach is complicated method in establishing relationship between multiple parameters. Response surface methodology (RSM) is a recommended approach as it is widely used to analyze and study the interactions between multiple parameters and provides optimum output as well as minimizing the defects which result in good treatment system. This paper overviews the recent and current research in the application of RSM in optimizing the treatment development of POME.
基金Projects(81373284,81102344) supported by the National Natural Science Foundation of China
文摘The spherical macroporous cellulose(SMC) was fabricated using medical absorbent cotton as raw material and nano CaCO3 as porogenic agents.And then,the phenylglycine was grafted onto the SMC to obtain the novel spherical macroporous cellulose derivative adsorbent(PSMC).FT-IR and scanning electron microscope(SEM) were employed to characterize the adsorbents and Fe3+ ions served as model solute to evaluate the adsorption property of the adsorbents.The experimental results show that the amount of porogenic agents and the value of pH have obvious influence on adsorption capacity of the adsorbents.The data of adsorption kinetic and isotherm display that the adsorbents possess excellent equilibrium adsorption capacity(348.94 mg/g) and have a bright prospect and considerable potential in the treatment of Fe3+ ions in wastewater.
基金Supported by the State Key Development Program for Basic Research of China(2006BAC02A17)
文摘Bio-fuel can be used to help transition from a petroleum-based society to a bio-based society. Ever since the China Development and Reform Commission suspended the approval of crop processing programs, second-generation bio-ethanol research and industrialization processes have attracted significant attention. In 2020, bio-ethanol production is predicted to reach 10 million tons. Currently, there are a few domestic enterprises that have established different scaled pilot or demonstration bases for cellulosic ethanol, which reduce the cost of ethanol by continuously improving pretreatment and hydrolysis techniques. In the next three years, these enterprises will realize large-scale commercial production. Given the practical problems in cellulosic ethanol plant construction and operation(e.g., marketing price variation and difficulties in feedstock collection), this paper began with the concept of a "whole-crop refinery" and presented a solution to the integration of industry and agriculture as well as multi-crop refining. This paper then took the whole-crop refining system of corn as an example and presented an analysis of the logistics, energy flow, and economical efficiency of the system. The results demonstrated that the integrated system could properly reduce the required fixed investments in production equipment,shared utilities, and wastewater treatment facilities, as well as reduction of energy consumption. Although the proposed system has several problems, it brings the long-term goal of large-scale commercial application closer than ever.