The treatment of domestic and industrial wastewater is one of the major sources of CH_4 in the Chinese waste sector. On the basis of statistical data and country-specific emission factors, using IPCC methodology, the ...The treatment of domestic and industrial wastewater is one of the major sources of CH_4 in the Chinese waste sector. On the basis of statistical data and country-specific emission factors, using IPCC methodology, the characteristics of CH_4 emissions from wastewater treatment in China were analyzed. The driving factors of CH_4 emissions were studied, and the emission trend and reduction potential were predicted and analyzed according to the current situation. Results show that in 2010, CH_4 emissions from the treatment of domestic and industrial wastewater were0.6110 Mt and 1.6237 Mt, respectively. Eight major industries account for more than 92% of emissions, and CH_4 emissions gradually increased from 2005 to 2010. From the controlling management scenario, we predict that in 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will be 1.0136 Mt and 2.3393 Mt, respectively, and the reduction potential will be 0.0763 Mt and 0.2599 Mt, respectively.From 2010 to 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will increase by 66% and 44%, respectively.展开更多
As a novel advanced oxidation process (AOP), electro-Fenton process is powerful for degrading most organic compounds including toxic and non-biodegradable ones, and so has attracted great attention. This paper reviews...As a novel advanced oxidation process (AOP), electro-Fenton process is powerful for degrading most organic compounds including toxic and non-biodegradable ones, and so has attracted great attention. This paper reviews this process in detail including the mechanism, electrolytic bath, electrode materials, aerations and operation parameters. The application of electro-Fenton method in wastewater treatment is evaluated and summarized. Future work in this field is suggested, and three main directions of new electrode exploitation, development of assisted technologies and mechanistic study should be strengthened.展开更多
With the development of industry in China, the emission issues of indus- trial wastewater has got more and more attention. Excessive levels of pollutants in wastewater are urgent problem to be solved. Together with th...With the development of industry in China, the emission issues of indus- trial wastewater has got more and more attention. Excessive levels of pollutants in wastewater are urgent problem to be solved. Together with the emissions of do- mestic wastewater, the discharge amount of pollutants has exceeded standard in many cities, which not only pollutes the water resources, but also greatly threatens the environment, and does great harm to people's health. The principal component analysis was conducted based on the principal components extracted from the data of major pollutants emission conditions in the wastewater of major cities from the China Statistical Yearbook 2014.展开更多
The de-eutrophication abilities and characteristics of Ulva pertusa, a marine green alga, were investigated in Qingdao Yihai Hatchery Center from spring to summer in 2005 by analyzing the dynamic changes in NH4-, NO3-...The de-eutrophication abilities and characteristics of Ulva pertusa, a marine green alga, were investigated in Qingdao Yihai Hatchery Center from spring to summer in 2005 by analyzing the dynamic changes in NH4-, NO3-, NO2- as well as the total dissolved inorganic nitrogen (DIN). The results show that the effluent wastewater produced by fish aquaculture had typical eutrophication levels with an average of 34.3 ~mol L-1 DIN. This level far exceeded the level IV quality of the national seawater standard and could easily lead to phytoplankton blooms in nature if discarded with no treatment. The de-eutrophication abilities of U. pertusa varied greatly and depended mainly on the original eutrophic level the U. pertusa material was derived from. U. pertusa used to living in low DIN conditions had poor DIN removal abilities, while materials cultured in DIN-enriched seawater showed strong de-eutrophication abilities. In other words, the de-eutrophication ability of U. pertusa was evidently induced by high DIN levels. The de-eutrophication capacity of U. pertusa seemed to also be light dependent, because it was weaker in darkness than under illumination. However, no further improvement in the de-eutrophication capacity of U. pertusa was observed once the light intensity exceeded 300 pmolM2 S1. Results of semi-continuous wastewater replacement experiments showed that U. pertusa permanently absorbed nutrients from eutrophicated wastewater at a mean rate of 299 mg/kg fresh weight per day (126 mg/kg DIN during the night, 173 mg/kg in daytime). Based on the above results, engineered de-eutrophication of wastewater by using a U. pertusa filter system seems feasible. The algal quantity required to purify all the eutrophicated outflow wastewater from the Qingdao Yihai Hatchery Center into oligotrophic level I dean seawater was also estimated using the daily discharged wastewater, the average DIN concentration released and the de-eutrophication capacity of U. pertusa.展开更多
The paper presents a procedure to design water network. First of all, water reuse system, water regeneration reuse system (including regeneration recycle) and wastewater treatment system are designed separately. But t...The paper presents a procedure to design water network. First of all, water reuse system, water regeneration reuse system (including regeneration recycle) and wastewater treatment system are designed separately. But the interaction between different parts demands that each part is designed iteratively to optimize the whole water network. Therefore, on the basis of the separated design a water netvrork superstructure including reuse, regeneration and wastewater treatment is established from the system engineering point of view. And a multi-objective adaptive simulated annealing genetic algorithm is adopted to simultaneously integrate the overall water netvrork to balance the economic and environmental effects. The algorithm overcomes the defect of local optimum of simulated annealing (SA), avoids the pre-maturation of genetic algorithm (GA) and finds a set of solutions (pareto front) in acceptable computer time. Prom the pareto front, a point with minimum fresh water consumption will be extended to zero discharge as our ultimate goal.展开更多
In this study, the O3/BAC/TiO2 catalytic method was used to treat the phenolic wastewater. During the experiments the effects of initial phenol concentration, ozone concentration, pH value, catalyst and other conditio...In this study, the O3/BAC/TiO2 catalytic method was used to treat the phenolic wastewater. During the experiments the effects of initial phenol concentration, ozone concentration, pH value, catalyst and other conditions on the phenol removal rate were investigated. The test results showed that when the phenol concentration was 0.1 g/L, the ozone-containing air flow rate was 0.05 m3/b, the ozone concentration was 3.58 mg/L, the pH value was 7.5, and the treating time was 30 minutes, the phenol removal rate reached 99%, with the COD removal rate equating to 55%. The property of treated wastewater could comply with the first-grade effluent specified in "Comprehensive Wastewater Discharge Standard" (GB8978--1996).展开更多
Dairy wastewater effluent has become one of the major concerns for the dairy processing industries. Because of large of wastewater effluent generation, the dairy processing industries may become potential candidates f...Dairy wastewater effluent has become one of the major concerns for the dairy processing industries. Because of large of wastewater effluent generation, the dairy processing industries may become potential candidates for wastewater reuse. Treated wastewater can be utilized in cooling systems and washing plant floor, as well as its potential use for greenery irrigation purposes. In addition, treating dairy effluent will also benefit the environment. The purpose of this study is to characterize wastewater from a selected dairy industry in Kuwait (Kuwait Dairy Company) and a study of applying micro filtration treatment process for treating the dairy wastewater. A complete treatment system including biological treatment, powdered activated carbon (PAC) and submerged membrane microfiltration system (CMF-S) was installed at Kuwait Institute for Scientific Research (KISR) research plant. The overall results of this study indicate that the complete system is capable of treating the dairy effluent. The average removal efficiencies of the system for biological oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solid (TDS) were 98.8%, 92.5%, 96.7% respectively.展开更多
[Objective] This study was conducted to investigate the effect of laundry wastewater on the quality of river water and the dilution purification effect of river water on laundry wastewater. [Method] The effects of lau...[Objective] This study was conducted to investigate the effect of laundry wastewater on the quality of river water and the dilution purification effect of river water on laundry wastewater. [Method] The effects of laundry wastewater on the contents of total nitrogen(TN), total phosphorus(TP), suspended solids(SS), chemical oxygen demand(COD) and linear alkylbenzene sulfonic acid(LAS) were studied in 7 rivers of Shaoxing City. [Result](1) The contents of TN, TP, SS, COD and LAS increased by 92%, 99%, 340%, 351% and 923%, respectively, at the discharging moment of laundry wastewater; and(2) the five pollutional indexes significantly decreased over time, and especially 2 h after the discharge of laundry wastewater, compared with former the discharge of laundry wastewater, the contents of TN, TP, COD and LAS increased by 6%, 11%, 9% and13%, respectively,while the contents of SS still increased by 76%, i.e., SS required a longer time to achieve self-purification. [Conclusion] Laundry wastewater has some influence on thequality of river water, and the self-purification function of river water could effectively remove pollutants.展开更多
A full-scale experimental study of treating mustard wastewater by the integrated bioreactor with designed scale of 1 000 m3/d is conducted combined with a demonstration project. The systematical researches on the effi...A full-scale experimental study of treating mustard wastewater by the integrated bioreactor with designed scale of 1 000 m3/d is conducted combined with a demonstration project. The systematical researches on the efficiency of combined operation conditions of anaerobic-aerobic and anaerobic-aerobic-flocculation as well as chemical phosphorus removal of hypersaline mustard wastewater are conducted. The optimal operation condition and parameters in pretreatment of mustard wastewater in winter (the water temperature ranges 8-15 ~C) are determined: the anaerobic load is 3.0 kg (COD)/(m3.d), the average COD and phosphate concentration of the inflow are respectively 3 883 mg/L and 35.53 mg/L and the dosage of flocculent (PAC) is 400 mg/L. The anaerobic-aerobic-flocculation combined operation condition and postpositive phosphorous removal with ferrous sulfate are employed. After treatment, the COD of the effluent is 470 mg/L and the average phosphate concentration is 5.09 mg/L. The effluent could achieve the third-level of Integrated Wastewater Discharge Standard (GB 8978--1996).展开更多
There are a number of factors that contribute to heavy metal contamination in agricultural soils including deficient management of solid waste, waste water discharge, irrigation with contaminated water, and use of fer...There are a number of factors that contribute to heavy metal contamination in agricultural soils including deficient management of solid waste, waste water discharge, irrigation with contaminated water, and use of fertilizers and pesticides. The aim of this study is to estimate the sources and the levels of metals in soils of the ULB (Upper Litani Basin) that receive all mentioned factors. Soil samples were collected during the dry season from 24 sites along the Litani River flow, and 12 sites irrigated by Canal 900 withdrawn from the Qaraoun Dam along river. Metals in soils were analyzed using EDXRF (energy dispersive X-ray fluorescence) technique. Data revealed the following average levels of some heavy metals in soils with high percentage of samples exceeding the international guidelines: Mn (593 mg/kg)--67%, Ni (98 mg/kg)--96%, Cr (143 mg/kg)--92%, Hg (3.6 mg/kg)--38%, Cd (2.8 mg/kg)---25% and As (17.6 mg/kg)-84%. In canal soils: Mn (683 mg/kg)-86%, Ni (156 mg/kg)-100%, Cr (203 mg/kg) -100%, Hg (2.3 mg/kg)-25%, Cd (3.3 mg/kg)-25% and As (19.5 mg/kg)-92%. The prime source of toxic metals was due to the agricultural runoffs, beside sewage and domestic waste water discharge. Thus, the prominent findings of high levels of toxic metals (Cr, Cd, Hg and As) in soils and consequent probability in plants might induce a major health threat to consumers,展开更多
This paper provides an extended input-occupancy-output analysis of wastewater discharge coeffcients, as well as backward and forward linkages of Chinese multi-regional industrial sectors in2007. The results show that ...This paper provides an extended input-occupancy-output analysis of wastewater discharge coeffcients, as well as backward and forward linkages of Chinese multi-regional industrial sectors in2007. The results show that the direct and total industrial wastewater discharge coeffcients of most of the provincial industrial sectors in China's Eastern region are lower than those of the whole country.Both backward and forward linkages of fixed-asset occupancy in industrial sectors in China's Central and Western regions are strong. The dissimilarity of cross-sectional data of the relevant industrial wastewater discharge coeffcients and linkages in multi-regional input-output analysis becomes bigger as regions are divided more extensively.展开更多
基金supported by the National Natural Science Foundation of China (41175137)the Climate Change Working Program of MEP in 2015 (CC(2015)-9-3)the Climate Change Project of Beijing in 2014 (ZHCKT4)
文摘The treatment of domestic and industrial wastewater is one of the major sources of CH_4 in the Chinese waste sector. On the basis of statistical data and country-specific emission factors, using IPCC methodology, the characteristics of CH_4 emissions from wastewater treatment in China were analyzed. The driving factors of CH_4 emissions were studied, and the emission trend and reduction potential were predicted and analyzed according to the current situation. Results show that in 2010, CH_4 emissions from the treatment of domestic and industrial wastewater were0.6110 Mt and 1.6237 Mt, respectively. Eight major industries account for more than 92% of emissions, and CH_4 emissions gradually increased from 2005 to 2010. From the controlling management scenario, we predict that in 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will be 1.0136 Mt and 2.3393 Mt, respectively, and the reduction potential will be 0.0763 Mt and 0.2599 Mt, respectively.From 2010 to 2020, CH_4 emissions from the treatment of domestic and industrial wastewater will increase by 66% and 44%, respectively.
基金Project supported by the National Natural Science Foundation of China (No. 50478049)the Natural Science Foundation of Guangdong Province (No. 04011215), China
文摘As a novel advanced oxidation process (AOP), electro-Fenton process is powerful for degrading most organic compounds including toxic and non-biodegradable ones, and so has attracted great attention. This paper reviews this process in detail including the mechanism, electrolytic bath, electrode materials, aerations and operation parameters. The application of electro-Fenton method in wastewater treatment is evaluated and summarized. Future work in this field is suggested, and three main directions of new electrode exploitation, development of assisted technologies and mechanistic study should be strengthened.
文摘With the development of industry in China, the emission issues of indus- trial wastewater has got more and more attention. Excessive levels of pollutants in wastewater are urgent problem to be solved. Together with the emissions of do- mestic wastewater, the discharge amount of pollutants has exceeded standard in many cities, which not only pollutes the water resources, but also greatly threatens the environment, and does great harm to people's health. The principal component analysis was conducted based on the principal components extracted from the data of major pollutants emission conditions in the wastewater of major cities from the China Statistical Yearbook 2014.
基金Supported by the Knowledge Innovation Program of the Chinese Adademy of Sciences (No. KZCX3-SW-215)Special Project for Marine Public Walfare Industry (No. 200705010)
文摘The de-eutrophication abilities and characteristics of Ulva pertusa, a marine green alga, were investigated in Qingdao Yihai Hatchery Center from spring to summer in 2005 by analyzing the dynamic changes in NH4-, NO3-, NO2- as well as the total dissolved inorganic nitrogen (DIN). The results show that the effluent wastewater produced by fish aquaculture had typical eutrophication levels with an average of 34.3 ~mol L-1 DIN. This level far exceeded the level IV quality of the national seawater standard and could easily lead to phytoplankton blooms in nature if discarded with no treatment. The de-eutrophication abilities of U. pertusa varied greatly and depended mainly on the original eutrophic level the U. pertusa material was derived from. U. pertusa used to living in low DIN conditions had poor DIN removal abilities, while materials cultured in DIN-enriched seawater showed strong de-eutrophication abilities. In other words, the de-eutrophication ability of U. pertusa was evidently induced by high DIN levels. The de-eutrophication capacity of U. pertusa seemed to also be light dependent, because it was weaker in darkness than under illumination. However, no further improvement in the de-eutrophication capacity of U. pertusa was observed once the light intensity exceeded 300 pmolM2 S1. Results of semi-continuous wastewater replacement experiments showed that U. pertusa permanently absorbed nutrients from eutrophicated wastewater at a mean rate of 299 mg/kg fresh weight per day (126 mg/kg DIN during the night, 173 mg/kg in daytime). Based on the above results, engineered de-eutrophication of wastewater by using a U. pertusa filter system seems feasible. The algal quantity required to purify all the eutrophicated outflow wastewater from the Qingdao Yihai Hatchery Center into oligotrophic level I dean seawater was also estimated using the daily discharged wastewater, the average DIN concentration released and the de-eutrophication capacity of U. pertusa.
文摘The paper presents a procedure to design water network. First of all, water reuse system, water regeneration reuse system (including regeneration recycle) and wastewater treatment system are designed separately. But the interaction between different parts demands that each part is designed iteratively to optimize the whole water network. Therefore, on the basis of the separated design a water netvrork superstructure including reuse, regeneration and wastewater treatment is established from the system engineering point of view. And a multi-objective adaptive simulated annealing genetic algorithm is adopted to simultaneously integrate the overall water netvrork to balance the economic and environmental effects. The algorithm overcomes the defect of local optimum of simulated annealing (SA), avoids the pre-maturation of genetic algorithm (GA) and finds a set of solutions (pareto front) in acceptable computer time. Prom the pareto front, a point with minimum fresh water consumption will be extended to zero discharge as our ultimate goal.
文摘In this study, the O3/BAC/TiO2 catalytic method was used to treat the phenolic wastewater. During the experiments the effects of initial phenol concentration, ozone concentration, pH value, catalyst and other conditions on the phenol removal rate were investigated. The test results showed that when the phenol concentration was 0.1 g/L, the ozone-containing air flow rate was 0.05 m3/b, the ozone concentration was 3.58 mg/L, the pH value was 7.5, and the treating time was 30 minutes, the phenol removal rate reached 99%, with the COD removal rate equating to 55%. The property of treated wastewater could comply with the first-grade effluent specified in "Comprehensive Wastewater Discharge Standard" (GB8978--1996).
文摘Dairy wastewater effluent has become one of the major concerns for the dairy processing industries. Because of large of wastewater effluent generation, the dairy processing industries may become potential candidates for wastewater reuse. Treated wastewater can be utilized in cooling systems and washing plant floor, as well as its potential use for greenery irrigation purposes. In addition, treating dairy effluent will also benefit the environment. The purpose of this study is to characterize wastewater from a selected dairy industry in Kuwait (Kuwait Dairy Company) and a study of applying micro filtration treatment process for treating the dairy wastewater. A complete treatment system including biological treatment, powdered activated carbon (PAC) and submerged membrane microfiltration system (CMF-S) was installed at Kuwait Institute for Scientific Research (KISR) research plant. The overall results of this study indicate that the complete system is capable of treating the dairy effluent. The average removal efficiencies of the system for biological oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solid (TDS) were 98.8%, 92.5%, 96.7% respectively.
基金Supported by Natural Science Foundation of China(31500321)Scientific Research Foundation of Shaoxing University(20145024)
文摘[Objective] This study was conducted to investigate the effect of laundry wastewater on the quality of river water and the dilution purification effect of river water on laundry wastewater. [Method] The effects of laundry wastewater on the contents of total nitrogen(TN), total phosphorus(TP), suspended solids(SS), chemical oxygen demand(COD) and linear alkylbenzene sulfonic acid(LAS) were studied in 7 rivers of Shaoxing City. [Result](1) The contents of TN, TP, SS, COD and LAS increased by 92%, 99%, 340%, 351% and 923%, respectively, at the discharging moment of laundry wastewater; and(2) the five pollutional indexes significantly decreased over time, and especially 2 h after the discharge of laundry wastewater, compared with former the discharge of laundry wastewater, the contents of TN, TP, COD and LAS increased by 6%, 11%, 9% and13%, respectively,while the contents of SS still increased by 76%, i.e., SS required a longer time to achieve self-purification. [Conclusion] Laundry wastewater has some influence on thequality of river water, and the self-purification function of river water could effectively remove pollutants.
基金Project(20090191120036) supported by the Fund of Doctoral Program of Ministry of Education,China
文摘A full-scale experimental study of treating mustard wastewater by the integrated bioreactor with designed scale of 1 000 m3/d is conducted combined with a demonstration project. The systematical researches on the efficiency of combined operation conditions of anaerobic-aerobic and anaerobic-aerobic-flocculation as well as chemical phosphorus removal of hypersaline mustard wastewater are conducted. The optimal operation condition and parameters in pretreatment of mustard wastewater in winter (the water temperature ranges 8-15 ~C) are determined: the anaerobic load is 3.0 kg (COD)/(m3.d), the average COD and phosphate concentration of the inflow are respectively 3 883 mg/L and 35.53 mg/L and the dosage of flocculent (PAC) is 400 mg/L. The anaerobic-aerobic-flocculation combined operation condition and postpositive phosphorous removal with ferrous sulfate are employed. After treatment, the COD of the effluent is 470 mg/L and the average phosphate concentration is 5.09 mg/L. The effluent could achieve the third-level of Integrated Wastewater Discharge Standard (GB 8978--1996).
文摘There are a number of factors that contribute to heavy metal contamination in agricultural soils including deficient management of solid waste, waste water discharge, irrigation with contaminated water, and use of fertilizers and pesticides. The aim of this study is to estimate the sources and the levels of metals in soils of the ULB (Upper Litani Basin) that receive all mentioned factors. Soil samples were collected during the dry season from 24 sites along the Litani River flow, and 12 sites irrigated by Canal 900 withdrawn from the Qaraoun Dam along river. Metals in soils were analyzed using EDXRF (energy dispersive X-ray fluorescence) technique. Data revealed the following average levels of some heavy metals in soils with high percentage of samples exceeding the international guidelines: Mn (593 mg/kg)--67%, Ni (98 mg/kg)--96%, Cr (143 mg/kg)--92%, Hg (3.6 mg/kg)--38%, Cd (2.8 mg/kg)---25% and As (17.6 mg/kg)-84%. In canal soils: Mn (683 mg/kg)-86%, Ni (156 mg/kg)-100%, Cr (203 mg/kg) -100%, Hg (2.3 mg/kg)-25%, Cd (3.3 mg/kg)-25% and As (19.5 mg/kg)-92%. The prime source of toxic metals was due to the agricultural runoffs, beside sewage and domestic waste water discharge. Thus, the prominent findings of high levels of toxic metals (Cr, Cd, Hg and As) in soils and consequent probability in plants might induce a major health threat to consumers,
基金supported by the National Natural Science Foundation of China under Grant Nos.41201129 and71203213the Science and Technology Service Network Initiative of the Chinese Academy of Sciences under Grant No.KFJ-EW-STS-003
文摘This paper provides an extended input-occupancy-output analysis of wastewater discharge coeffcients, as well as backward and forward linkages of Chinese multi-regional industrial sectors in2007. The results show that the direct and total industrial wastewater discharge coeffcients of most of the provincial industrial sectors in China's Eastern region are lower than those of the whole country.Both backward and forward linkages of fixed-asset occupancy in industrial sectors in China's Central and Western regions are strong. The dissimilarity of cross-sectional data of the relevant industrial wastewater discharge coeffcients and linkages in multi-regional input-output analysis becomes bigger as regions are divided more extensively.