A complex process of micro electrolysis and biofilm was developed to continuously treat organic wastew-aters containing heavy metal ions such as Cu2+ and Or3+, and the relevant purifying mechanism was also addressed. ...A complex process of micro electrolysis and biofilm was developed to continuously treat organic wastew-aters containing heavy metal ions such as Cu2+ and Or3+, and the relevant purifying mechanism was also addressed. In detail, organic materials in wastewater could be consumed as nutritious source by biofilm composed of aerobes and anaerobes. However, for heavy metal ions (Cu2+, Cr3+), part was removed by electrodeposition, and some was adsorbed on biofilm. In order to compare with the combined process of micro electrolysis and biofilm, the experimental data of micro electrolysis process (intermittent) or biofilm process (continuous) were provided, and the kinetic data of C6H12O6 (glucose) biodegradation by cultured microbes or acclimated microbes were also obtained. These experimental results indicated that for wastewater initially consisted of CeH12O6 (500mg-L-1), Cu2+ and Cr3+ (10mg-L-1), after treatment, its concentrations of C6H12O6, Cu2+ and Cr3+ were lowered to the level of 55-65mg.L^1, and less than 1mg-L-1, respectively. And the industrial reused water standards could be met by treated wastewater.展开更多
The biosorption of copper(Ⅱ) ions onto biofilm was studied in a batch system with respect to the temperature, initial pH value and biofilm sorbent mass. The biomass exhibited the highest copper(Ⅱ) sorption capacity ...The biosorption of copper(Ⅱ) ions onto biofilm was studied in a batch system with respect to the temperature, initial pH value and biofilm sorbent mass. The biomass exhibited the highest copper(Ⅱ) sorption capacity under the conditions of room temperature, initial pH value of 6.0 and the sorbent mass 8 g. The experimental data were analyzed using four sorption kinetic models, the pseudo-first order, the Ritchie second order, the modified second order and the Elovich equations to determine the best-fit equation for the sorption of metal ions onto biofilm. Comparing with the sum of squared-errors, the results show that both the Ritchie second order and modified second order equations can fit the experimental data very well.展开更多
基金Supported by the Natural Science Foundation of Tianjin,China(No.013802911).
文摘A complex process of micro electrolysis and biofilm was developed to continuously treat organic wastew-aters containing heavy metal ions such as Cu2+ and Or3+, and the relevant purifying mechanism was also addressed. In detail, organic materials in wastewater could be consumed as nutritious source by biofilm composed of aerobes and anaerobes. However, for heavy metal ions (Cu2+, Cr3+), part was removed by electrodeposition, and some was adsorbed on biofilm. In order to compare with the combined process of micro electrolysis and biofilm, the experimental data of micro electrolysis process (intermittent) or biofilm process (continuous) were provided, and the kinetic data of C6H12O6 (glucose) biodegradation by cultured microbes or acclimated microbes were also obtained. These experimental results indicated that for wastewater initially consisted of CeH12O6 (500mg-L-1), Cu2+ and Cr3+ (10mg-L-1), after treatment, its concentrations of C6H12O6, Cu2+ and Cr3+ were lowered to the level of 55-65mg.L^1, and less than 1mg-L-1, respectively. And the industrial reused water standards could be met by treated wastewater.
文摘The biosorption of copper(Ⅱ) ions onto biofilm was studied in a batch system with respect to the temperature, initial pH value and biofilm sorbent mass. The biomass exhibited the highest copper(Ⅱ) sorption capacity under the conditions of room temperature, initial pH value of 6.0 and the sorbent mass 8 g. The experimental data were analyzed using four sorption kinetic models, the pseudo-first order, the Ritchie second order, the modified second order and the Elovich equations to determine the best-fit equation for the sorption of metal ions onto biofilm. Comparing with the sum of squared-errors, the results show that both the Ritchie second order and modified second order equations can fit the experimental data very well.