A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater we...A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater were volatilized in the evaporation system and then the vapor was combusted in an incinerator. Simulated phenol wastewater containing sodium chloride was evaporated and concentrated and sodium chloride was crystallized in different parameters. The experimental results showed that the higher initial concentration of sodium chloride increases the ratio of volatilization of VOCs, which was due to the effect of “salting out” (a decrease in the solubility of the nonelectrolyte in the solution, or more rigorously, an increase in its activity coef-ficient, caused by the salt addition (Furter and Cook, 1967)). When evaporation speed was increased from 1.67 ml/min to 2.73 ml/min, the total removal coefficient of sodium chloride was about 99.88%~99.99%. This pretreatment procedure eliminates the slag phenomenon caused by Na+ and K+ salts during wastewater incineration, so the incinerator could operate continuously, and the wastewater evaporation could increase the heat value of wastewater, and the operation cost would be reduced.展开更多
Assessment of mass transfer characteristics of pervaporation (PV) treatment of wastewater contaminated with chlorinated hydrocarbons is of great importance for water treatment plant operators conducting initial eval...Assessment of mass transfer characteristics of pervaporation (PV) treatment of wastewater contaminated with chlorinated hydrocarbons is of great importance for water treatment plant operators conducting initial evaluation, process optimization, and process economics. While a membrane plays a central role in pervaporation processes and separation efficiency, the mass transfer in the liquid layer next to the membrane surface is of equal, if not greater importance. It is one of the few process parameters that can be adjusted in situ to manipulate the outcome of a pervaporation process. In this study, a bench scale pervaporation experiment of removing a common chlorinated hydrocarbon from water was carried out and the results of it were compared to the ones based on well-known semi-empirical correlations. The mass transfer coefficients from the experiments, ranging from 0.8× 10^-5-2.5× 10^-5 m/s under the operating conditions, are higher than those predicted by the correlation. The corresponding separation factors under varying flow velocities are determined to be between 310-950.展开更多
文摘A wastewater evaporation-desalination pretreatment method was introduced to remove the Na+ and K+ salts in volatile organic compounds (VOCs) wastewater before it was fed into the incinerator. VOCs in the wastewater were volatilized in the evaporation system and then the vapor was combusted in an incinerator. Simulated phenol wastewater containing sodium chloride was evaporated and concentrated and sodium chloride was crystallized in different parameters. The experimental results showed that the higher initial concentration of sodium chloride increases the ratio of volatilization of VOCs, which was due to the effect of “salting out” (a decrease in the solubility of the nonelectrolyte in the solution, or more rigorously, an increase in its activity coef-ficient, caused by the salt addition (Furter and Cook, 1967)). When evaporation speed was increased from 1.67 ml/min to 2.73 ml/min, the total removal coefficient of sodium chloride was about 99.88%~99.99%. This pretreatment procedure eliminates the slag phenomenon caused by Na+ and K+ salts during wastewater incineration, so the incinerator could operate continuously, and the wastewater evaporation could increase the heat value of wastewater, and the operation cost would be reduced.
基金Project supported by the U.S. Environmental Protection Agency and New Jersey Agricultural Experiment Station at Rutgers University
文摘Assessment of mass transfer characteristics of pervaporation (PV) treatment of wastewater contaminated with chlorinated hydrocarbons is of great importance for water treatment plant operators conducting initial evaluation, process optimization, and process economics. While a membrane plays a central role in pervaporation processes and separation efficiency, the mass transfer in the liquid layer next to the membrane surface is of equal, if not greater importance. It is one of the few process parameters that can be adjusted in situ to manipulate the outcome of a pervaporation process. In this study, a bench scale pervaporation experiment of removing a common chlorinated hydrocarbon from water was carried out and the results of it were compared to the ones based on well-known semi-empirical correlations. The mass transfer coefficients from the experiments, ranging from 0.8× 10^-5-2.5× 10^-5 m/s under the operating conditions, are higher than those predicted by the correlation. The corresponding separation factors under varying flow velocities are determined to be between 310-950.