期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
中性废油污染的研究——燃油烟气中多环芳烃(PAH_s)的测定
1
作者 刘维屏 《浙江大学学报(自然科学版)》 CSCD 1990年第3期460-462,共3页
运用玻纤滤膜及GDX—101采得燃油烟空中气态及颗粒物中为环芳烃(PAHs),经CH_2Cl_2提取后,通过GC/MS对提取液分析,对十五种多环芳烃进行了定性及半定量。结论指出废油燃烟中多环芳烃的污染是相当严重的。
关键词 废油燃料 烟气 多环芳烃 大气污染
下载PDF
Utilization of Waste Cooking Oil as Diesel Fuel and Improvement in Combustion and Emission 被引量:1
2
作者 Wira Jazair bin Yahya Mohd Norhisyam 《Journal of Mechanics Engineering and Automation》 2012年第4期267-270,共4页
Due to high price of Straight Vegetable Oil (SVO) for bio-diesel production, the use of Waste Cooking Oil (WCO) will be cost effective. Furthermore, utilization of WCO will refrain waterways pollution and endanger... Due to high price of Straight Vegetable Oil (SVO) for bio-diesel production, the use of Waste Cooking Oil (WCO) will be cost effective. Furthermore, utilization of WCO will refrain waterways pollution and endanger ecosystem. In Malaysia, more than 50-tone of WCO from various sources was produced every day. This study evaluates combustion performance and exhaust emission characteristics of several WCOs with different sources. Modification on fuel properties has been done to improve the combustion and exhaust emission of using WCO as diesel fuel. Regular diesel fuel also has been used for comparison in the test. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads at constant speed. 展开更多
关键词 Waste cooking oil diesel engine diesel emission.
下载PDF
Characterization and Modification of Indonesian Natural Zeolite for Hydrocracking of Waste Lubricant Oil into Liquid Fuel Fraction
3
作者 Wega Tnsunaryant Akhmad Syoufian Suryo Purwono 《Journal of Chemistry and Chemical Engineering》 2013年第2期175-180,共6页
Modification and characterization of natural zeolite under some various methods for hydrocracking catalyst of waste lubricant to gasoline and diesel fractions have been conducted. Natural zeolite from Klaten was activ... Modification and characterization of natural zeolite under some various methods for hydrocracking catalyst of waste lubricant to gasoline and diesel fractions have been conducted. Natural zeolite from Klaten was activated using hydrothermal treatment at temperature 500 ℃ for 6 h (produced ZAAHd), the ZA sample was treated with hydrothermal followed by Microwave (produced ZAAHdM), the ZA sample was treated with HCI 3 N at temperature of 90 ℃ for 30 min (produced ZAAH), the ZAAH sample was heated in to microwave (produced ZAAHM), the ZAAHM was treated hydrothermal (produced ZAAHMHd), the ZAAHMHd sample was heated in to microwave (produced ZAAHMHdM), soaking of natural zeolit activated by HCl-microwave-hydrothermal-microwave in NH4NO3 1 N which was stirred using stirer at room temperature for 24 h (produced ZAAHMHdMN) and the ZAAHMHdMN sample was heated into microwave (ZAAHMHdMNM). The heating process by microwave was conducted at 550 watt for 15 rain. Catalyst characterization involved determination of the number of total acid sites using gravimetric method with vapour adsorption of NH3 and pyridine, catalyst crystallinity by XRD (X-ray diffraction) and TO4 (T= Si and AI) site by infra red spectrophotometer (IR). Hydrocracking of waste lubricants oil was performed in a fixed bed reactor of stainless steel at temperature of 450 ℃, H2 flow rate of 15 mL/min., feed/catalyst ratio of 5. Liquid products of the hydrocracking were analyzed using GC (gas chromatography). The characterization results showed that various modification of natural zeolite increased acidity and dealumination degree of the catalysts. Products of the hydrocracking were liquid, coke, and gas fractions. Liquid products consisted of gasoline fraction (C5-C12), diesel fraction (C12-C20), and heavy oil fraction (〉 C20).Thc conversion of liquid products was increased with the increase of catalyst acidity. The greatest liquid product conversion was produced by the ZAAHMHdMNM catalyst, i.e., 56.80%, with selectivity towards gasoline, diesel, and heavy oil fractions was 88.37%, 8.61% and 3.02%, respectively. The increase of catalyst acidity increased the selectivity of gasoline fraction. 展开更多
关键词 Natural zeolite CHARACTERIZATION MODIFICATION HYDROCRACKING waste lubricant oil.
下载PDF
Demonstrative Study of Vehicles Using Waste Vegetable Oil as Fuel
4
作者 Yasuyuki Nemoto Izumi Ushiyama 《Journal of Energy and Power Engineering》 2015年第2期185-191,共7页
SVO (straight vegetable oil) method means the direct use of vegetable oil as car fuel through installation of a heater unit in the car to decrease vegetable oil viscosity. In this study, the authors carried out perf... SVO (straight vegetable oil) method means the direct use of vegetable oil as car fuel through installation of a heater unit in the car to decrease vegetable oil viscosity. In this study, the authors carried out performance tests on the direct use of waste cooking oil using a car with a heater unit, Moreover, the authors carried out long run driving on road tests in five years using a public car of Minami-Aizu Town in Fukushima Prefecture and analyzed the case of troubles and clarified the availability and problems of SVO vehicles. As a result, the car with a heater unit shows similar performance in both cases using vegetable oil or diesel fuel as fuel. The tested SVO vehicle of Minami-Aizu Town could be driven 38,127 km mainly by waste vegetable oil with a total driving distance of 52,293 km in long run driving tests in five years, and decreased about 3,813.5 liters of light oil which corresponds to 9.99 t of CO2. 展开更多
关键词 Waste cooking oil straight vegetable oil bio-fuel.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部