The pollution of aquatic ecosystem by heavy metals has assumed serious proportions due to their toxicity and accumulative behavior. The toxicity metal is dependent on its chemical form and therefore removal of metal i...The pollution of aquatic ecosystem by heavy metals has assumed serious proportions due to their toxicity and accumulative behavior. The toxicity metal is dependent on its chemical form and therefore removal of metal is more meaningful than the estimation of its concentrations. In this study, the batch experiments were carried out under 30℃ to study the effect of pH, initial Cr concentration, adsorbent dose and contact time on the removal of Cr (lII). The maximum adsorption efficiency (99%) was observed when 1.5 g of pond mud was used for removal ofCr (Ⅲ) from test solution containing 150 mg·Cr / 100 ml. The optimal pH and contact time recorded during the study were 6 and 10.0, respectively.展开更多
文摘The pollution of aquatic ecosystem by heavy metals has assumed serious proportions due to their toxicity and accumulative behavior. The toxicity metal is dependent on its chemical form and therefore removal of metal is more meaningful than the estimation of its concentrations. In this study, the batch experiments were carried out under 30℃ to study the effect of pH, initial Cr concentration, adsorbent dose and contact time on the removal of Cr (lII). The maximum adsorption efficiency (99%) was observed when 1.5 g of pond mud was used for removal ofCr (Ⅲ) from test solution containing 150 mg·Cr / 100 ml. The optimal pH and contact time recorded during the study were 6 and 10.0, respectively.