Physicochemical properties and leaching behaviors of two typical arsenic-bearing lime?ferrate sludges(ABLFS),waste acid residue(WAR)and calcium arsenate residue(CAR),are comprehensively described.The chemical composit...Physicochemical properties and leaching behaviors of two typical arsenic-bearing lime?ferrate sludges(ABLFS),waste acid residue(WAR)and calcium arsenate residue(CAR),are comprehensively described.The chemical composition,morphological features,phase composition and arsenic occurrence state of WAR and CAR are analyzed by ICP?AES,SEM?EDS,XRD,XPS and chemical phase analysis.The toxicity leaching test and three-stage BCR sequential extraction procedure are utilized to investigate arsenic leaching behaviors.The results show that the contents of arsenic in WAR and CAR are2.5%and21.2%and mainly present in the phases of arsenate and arsenic oxides dispersed uniformly or agglomerated in amorphous particles.The leaching concentrations of arsenic excess119and1063times of TCLP standard regulatory level with leaching rates of47.66%and50.15%for WAR and CAR,respectively.About90%of extracted arsenic is in the form of acid soluble and reducible,which is the reason of high arsenic leaching toxicity and environmental activity of ABLFS.This research provides comprehensive information on harmless disposal of ABLFS from industrial wastewater treatment of lime?ferrate process.展开更多
The results to develop a complex technology of co-extraction of germanium and gallium from the ash-and-slag wastes of coal combustion in Ukraine were presented. Based on the study of phase changes occurring in initial...The results to develop a complex technology of co-extraction of germanium and gallium from the ash-and-slag wastes of coal combustion in Ukraine were presented. Based on the study of phase changes occurring in initial raw materials as a result of its processing, it was proposed to carry out a preliminary enrichment of the raw materials in order to produce secondary sublimates. Their further processing involves a combination of leaching soluble material with distillation of germanium in the form of tetrachloride. The resulting acidic solutions are trended to the gallium extraction. Optimum conditions of carrying out of processes are recommended.The chemical and phase composition of the resulting dump products and solutions have been defined. On the basis of it ways of their processing for the purpose of reception of alumina and building materials are recommended.展开更多
基金Project(201509050)supported by Special Program on Environmental Protection for Public Welfare,ChinaProjects(51474247,51634010)supported by the National Natural Science Foundation of ChinaProject(2015CX001)supported by Grants from the Project of Innovation-driven Plan in Central South University,China
文摘Physicochemical properties and leaching behaviors of two typical arsenic-bearing lime?ferrate sludges(ABLFS),waste acid residue(WAR)and calcium arsenate residue(CAR),are comprehensively described.The chemical composition,morphological features,phase composition and arsenic occurrence state of WAR and CAR are analyzed by ICP?AES,SEM?EDS,XRD,XPS and chemical phase analysis.The toxicity leaching test and three-stage BCR sequential extraction procedure are utilized to investigate arsenic leaching behaviors.The results show that the contents of arsenic in WAR and CAR are2.5%and21.2%and mainly present in the phases of arsenate and arsenic oxides dispersed uniformly or agglomerated in amorphous particles.The leaching concentrations of arsenic excess119and1063times of TCLP standard regulatory level with leaching rates of47.66%and50.15%for WAR and CAR,respectively.About90%of extracted arsenic is in the form of acid soluble and reducible,which is the reason of high arsenic leaching toxicity and environmental activity of ABLFS.This research provides comprehensive information on harmless disposal of ABLFS from industrial wastewater treatment of lime?ferrate process.
文摘The results to develop a complex technology of co-extraction of germanium and gallium from the ash-and-slag wastes of coal combustion in Ukraine were presented. Based on the study of phase changes occurring in initial raw materials as a result of its processing, it was proposed to carry out a preliminary enrichment of the raw materials in order to produce secondary sublimates. Their further processing involves a combination of leaching soluble material with distillation of germanium in the form of tetrachloride. The resulting acidic solutions are trended to the gallium extraction. Optimum conditions of carrying out of processes are recommended.The chemical and phase composition of the resulting dump products and solutions have been defined. On the basis of it ways of their processing for the purpose of reception of alumina and building materials are recommended.