General pretreatment processes of ammonia stripping and phenols solvent extraction can reduce the concentration of toxic compounds of the coal gasification wastewater for the following biological treatment. However, s...General pretreatment processes of ammonia stripping and phenols solvent extraction can reduce the concentration of toxic compounds of the coal gasification wastewater for the following biological treatment. However, some emulsified coal tar still exists in the influent and many substances in coal tar are refractory and toxic to microorganisms. This study is mainly on the removal of emulsified coal tar by acidification demulsion. The experimental results show that the acidification process of the wastewater by pure hydrochloric acid can reduce the chemical oxygen demand (COD), total organic carbon (TOC), total phenolics and oil about 3.1%-11.3%, 6%-- 10.8%, 5.3%--8.6% and 25.2%--57.4% respectively with pH value in the range of 4 to 7. The analysis of molecular weight distribution indicates that compounds removed from the wastewater by this process are large molecular substances. The experiment also shows that the efficiency of COD removal in the demulsion process by different acids is different and the phosphoric acid is prominent. The preserved time of the wastewater also affects the efficiency of demulsion. Small amount low-cost solid additives including kaolin and diatomite can improve the rate of coal tar sedimentation and enhance the removal efficiency of organics in the phosphoric acidification process.展开更多
Thermal upgrading of vacuum residue mixed with waste plastics was studied in a laboratory scale delayed coking unit.The model of feed thermal decomposition was set up and the first order reaction kinetics was used to ...Thermal upgrading of vacuum residue mixed with waste plastics was studied in a laboratory scale delayed coking unit.The model of feed thermal decomposition was set up and the first order reaction kinetics was used to predict products distribution during the coking process.The distillate yield was higher(70%) for the vacuum residue/polystyrene(VR/PS) feed system and the vacuum residue/low density polyethylene(VR/LDPE) feed system.The resulted distillate yield was separated into fractions according to their boiling points,with gasoline and diesel being our fractions of concern.The activation energy was higher for gasoline production(around 60 kcal/mol) varying with the type of feed system,while it was 33 kcal/mol for diesel fraction.The regression coefficient R was 0.990.展开更多
文摘General pretreatment processes of ammonia stripping and phenols solvent extraction can reduce the concentration of toxic compounds of the coal gasification wastewater for the following biological treatment. However, some emulsified coal tar still exists in the influent and many substances in coal tar are refractory and toxic to microorganisms. This study is mainly on the removal of emulsified coal tar by acidification demulsion. The experimental results show that the acidification process of the wastewater by pure hydrochloric acid can reduce the chemical oxygen demand (COD), total organic carbon (TOC), total phenolics and oil about 3.1%-11.3%, 6%-- 10.8%, 5.3%--8.6% and 25.2%--57.4% respectively with pH value in the range of 4 to 7. The analysis of molecular weight distribution indicates that compounds removed from the wastewater by this process are large molecular substances. The experiment also shows that the efficiency of COD removal in the demulsion process by different acids is different and the phosphoric acid is prominent. The preserved time of the wastewater also affects the efficiency of demulsion. Small amount low-cost solid additives including kaolin and diatomite can improve the rate of coal tar sedimentation and enhance the removal efficiency of organics in the phosphoric acidification process.
文摘Thermal upgrading of vacuum residue mixed with waste plastics was studied in a laboratory scale delayed coking unit.The model of feed thermal decomposition was set up and the first order reaction kinetics was used to predict products distribution during the coking process.The distillate yield was higher(70%) for the vacuum residue/polystyrene(VR/PS) feed system and the vacuum residue/low density polyethylene(VR/LDPE) feed system.The resulted distillate yield was separated into fractions according to their boiling points,with gasoline and diesel being our fractions of concern.The activation energy was higher for gasoline production(around 60 kcal/mol) varying with the type of feed system,while it was 33 kcal/mol for diesel fraction.The regression coefficient R was 0.990.