Adsorption of catechol from aqueous solution with the hypercrosslinked polymeric adsorbent NDA-100 and its derivatives AH-1, AH-2 and AH-3 aminated by dimethylamine, the commercial resin Amberlite XAD-4 and weakly bas...Adsorption of catechol from aqueous solution with the hypercrosslinked polymeric adsorbent NDA-100 and its derivatives AH-1, AH-2 and AH-3 aminated by dimethylamine, the commercial resin Amberlite XAD-4 and weakly basic anion exchanger resin D301 was compared. It was found that the aminated hypercrosslinked resins had the highest adsorption capacities among the tested polymers. The empirical Freundlich equation was successfully employed to describe the adsorption process. Specific surface area and micropore structure of the adsorbent, in company with tertiary amino groups on matrix affected the adsorption performance towards catechol. In addition, thermodynamic study was carried out to interpret the adsorption mechanism. Kinetic study testified that the tertiary amino groups on the polymer matrix could decrease the adsorption rate and increase the adsorption apparent activation energy.展开更多
To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemica...To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemical element composition, specific surface area, pore sizes, functional groups, TEM image, mineralogy and DSC-TG curves of raw and sintered fly ash specimens. The results show that MSWI fly ash particles mostly have irregular shapes and non-typical pore structure, and the supersonic treatment improves the pore structure; MSWI fly ash consists of Such crystals as SiO2, CaSO4 and silica-aluminates, and some soluble salts like KCl and NaCl. During the sintering process, mineralogy changes largely and novel solid solutions are produced gradually with the rise of temperature. Therefore, the utilization of a proper thermal technology not only destructs those persistent organic toxicants but also stabilizes hazardous heavy metals in MSWI fly ash.展开更多
Since the constant increase in petroleum price, use of glycerol waste, which is a byproduct from biodiesel production, as a partial replacement for fossil fuels via thermochemical conversion waste to energy processes ...Since the constant increase in petroleum price, use of glycerol waste, which is a byproduct from biodiesel production, as a partial replacement for fossil fuels via thermochemical conversion waste to energy processes is more practical. Gasification reaction has attracted a lot of interest by producing syngas rich in CO and H2. This syngas can be converted to clean liquid fuels, such as methanol and Fischer-Tropsch oil. Nickel and Cobalt catalyst was widely used in steam reforming reaction. ethanol etc. The aim of this work is to prepare and characterize 5.0 and 10.0%wt of Ni and Co catalysts using the impregnation method on various supporters, such as alumina and titanium oxide (TiO2) and to evaluate their catalytic performance. The specific surface area of developed catalysts was measured. X-ray diffraction (XRD) was applied to determine phase and crystallized size of the catalysts. Examination of the morphology. elemental composition and distribution of metal on the catalysts support were carried out using scanning electron microscopy (SEMi and energy dispersion spectroscopy (EDS) and x-ray mapping. The catalytic performance of prepared catalysts was test at 700 and 900℃ temperature of reaction. 1.87% O2. The result showed that the synthesized nickel and cobalt catalysts via impregnation method using Al2O3 and TiO2 as the catalyst support were suitable for glycerol conversion.展开更多
An experimental study of the treatment of plastic-contained Japanese MSW (municipal solid waste) employing 1 ton capacity hydrothermal reactor to produce chlorine-free solid fuel has been performed. The system appli...An experimental study of the treatment of plastic-contained Japanese MSW (municipal solid waste) employing 1 ton capacity hydrothermal reactor to produce chlorine-free solid fuel has been performed. The system applies medium-pressure saturated steam at about 2 MPa in a stirred reactor for certain holding period. It was shown that the products exhibited organic chlorine conversion into inorganic chlorine, which can then be water washed. To obtain an optimal operating condition, the temperature and holding period was integrated into one parameter called RS (reaction severity). It was found that to convert 75% organic chlorine in the MSW, the optimum RS number correlates to an operating temperature of about 225℃ and holding period of 90 min, or 235 ℃ for 60 min. Since hydrothermal treatment is a batch process, a shorter holding period is preferable to increase the number of batches and indirectly increase its processing capacity.展开更多
One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is a...One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is analyzed. The reaction heat is recovered by means of Organic Rankine Circle. The process of SCWO for phenol is simulated with the Aspen Plus~ process simulator, and the results show that the influence of temperature on reaction heat is small at a constant pressure. It is reasonable to neglect the effect of temperature and to estimate the heat of reaction with average temperature when the temperature changes in a small range. The necessary condition to realize an energetically self-sufficient SCWO process is that the released energy is not less than consumed one. Whether a waste system with given chemical composition is energeticallyself-sufficient can be estimated by ^QR^QH 〉 W The thermodynamics analysis shows that energetically self-sufficient SCWO process with an Organic Rankine Cycle is a feasible technology for the recovery of SCWO reaction heat,and the energy balance point for phenol is 2wt%.展开更多
文摘Adsorption of catechol from aqueous solution with the hypercrosslinked polymeric adsorbent NDA-100 and its derivatives AH-1, AH-2 and AH-3 aminated by dimethylamine, the commercial resin Amberlite XAD-4 and weakly basic anion exchanger resin D301 was compared. It was found that the aminated hypercrosslinked resins had the highest adsorption capacities among the tested polymers. The empirical Freundlich equation was successfully employed to describe the adsorption process. Specific surface area and micropore structure of the adsorbent, in company with tertiary amino groups on matrix affected the adsorption performance towards catechol. In addition, thermodynamic study was carried out to interpret the adsorption mechanism. Kinetic study testified that the tertiary amino groups on the polymer matrix could decrease the adsorption rate and increase the adsorption apparent activation energy.
基金Project(50808184) supported by the National Natural Science Foundation of China
文摘To analyze the feasibility of utilization of thermal technology in fly ash treatment, thermal properties and microstructures of municipal solid waste incineration (MSW1) fly ash were studied by measuring the chemical element composition, specific surface area, pore sizes, functional groups, TEM image, mineralogy and DSC-TG curves of raw and sintered fly ash specimens. The results show that MSWI fly ash particles mostly have irregular shapes and non-typical pore structure, and the supersonic treatment improves the pore structure; MSWI fly ash consists of Such crystals as SiO2, CaSO4 and silica-aluminates, and some soluble salts like KCl and NaCl. During the sintering process, mineralogy changes largely and novel solid solutions are produced gradually with the rise of temperature. Therefore, the utilization of a proper thermal technology not only destructs those persistent organic toxicants but also stabilizes hazardous heavy metals in MSWI fly ash.
文摘Since the constant increase in petroleum price, use of glycerol waste, which is a byproduct from biodiesel production, as a partial replacement for fossil fuels via thermochemical conversion waste to energy processes is more practical. Gasification reaction has attracted a lot of interest by producing syngas rich in CO and H2. This syngas can be converted to clean liquid fuels, such as methanol and Fischer-Tropsch oil. Nickel and Cobalt catalyst was widely used in steam reforming reaction. ethanol etc. The aim of this work is to prepare and characterize 5.0 and 10.0%wt of Ni and Co catalysts using the impregnation method on various supporters, such as alumina and titanium oxide (TiO2) and to evaluate their catalytic performance. The specific surface area of developed catalysts was measured. X-ray diffraction (XRD) was applied to determine phase and crystallized size of the catalysts. Examination of the morphology. elemental composition and distribution of metal on the catalysts support were carried out using scanning electron microscopy (SEMi and energy dispersion spectroscopy (EDS) and x-ray mapping. The catalytic performance of prepared catalysts was test at 700 and 900℃ temperature of reaction. 1.87% O2. The result showed that the synthesized nickel and cobalt catalysts via impregnation method using Al2O3 and TiO2 as the catalyst support were suitable for glycerol conversion.
文摘An experimental study of the treatment of plastic-contained Japanese MSW (municipal solid waste) employing 1 ton capacity hydrothermal reactor to produce chlorine-free solid fuel has been performed. The system applies medium-pressure saturated steam at about 2 MPa in a stirred reactor for certain holding period. It was shown that the products exhibited organic chlorine conversion into inorganic chlorine, which can then be water washed. To obtain an optimal operating condition, the temperature and holding period was integrated into one parameter called RS (reaction severity). It was found that to convert 75% organic chlorine in the MSW, the optimum RS number correlates to an operating temperature of about 225℃ and holding period of 90 min, or 235 ℃ for 60 min. Since hydrothermal treatment is a batch process, a shorter holding period is preferable to increase the number of batches and indirectly increase its processing capacity.
文摘One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is analyzed. The reaction heat is recovered by means of Organic Rankine Circle. The process of SCWO for phenol is simulated with the Aspen Plus~ process simulator, and the results show that the influence of temperature on reaction heat is small at a constant pressure. It is reasonable to neglect the effect of temperature and to estimate the heat of reaction with average temperature when the temperature changes in a small range. The necessary condition to realize an energetically self-sufficient SCWO process is that the released energy is not less than consumed one. Whether a waste system with given chemical composition is energeticallyself-sufficient can be estimated by ^QR^QH 〉 W The thermodynamics analysis shows that energetically self-sufficient SCWO process with an Organic Rankine Cycle is a feasible technology for the recovery of SCWO reaction heat,and the energy balance point for phenol is 2wt%.