The removal performance of a basic dye, methylene blue (MB), in aqueous solution was investigated by adsorption process on single-phase and high-crystalline zeolite A (FA-ZA) and X (FA-ZX). Both adsorbents FA-ZA and F...The removal performance of a basic dye, methylene blue (MB), in aqueous solution was investigated by adsorption process on single-phase and high-crystalline zeolite A (FA-ZA) and X (FA-ZX). Both adsorbents FA-ZA and FA-ZX were synthesized from fly ash prepared aluminosilicate gel followed by the hydrothermal treatment at 100°C with the control of Si/Al molar ratio, respectively. The properties of the synthetic zeolites and commercial grade zeolites, such as thermal stability, elemental composition, and cation exchange capacity, were investigated for comparison. Batch method was used to study the influential parameters, such as initial pH value of the solution, temperatures, and adsorbents dosage, on the adsorption process. The experimental data were well fitted by Ho’ pseudo-second-order model and liquid film diffusion model. The suitability of Langmuir and Freundlich isotherms to the equilibrium data was investigated in the solid-liquid system while the Langmuir model produces the best re-sults. Thermodynamic data (△H, △S, and △G) corresponding to the MB uptake were evaluated from the Langmuir model. In all the adsorption experiments, the adsorption capacity followed the order as follows: FA-ZX > FA-ZA. In addition, attempts were also made to regenerate the adsorbents.展开更多
A single-factor experiment of copper ion adsorption on pure palygorskite was carried out to understand the Cu2+ sorption of palygorskite—an important clay mineral in soil and sedimentary rock. In addition, pH of the ...A single-factor experiment of copper ion adsorption on pure palygorskite was carried out to understand the Cu2+ sorption of palygorskite—an important clay mineral in soil and sedimentary rock. In addition, pH of the solution and the surface microstructure of palygorskite were investigated before and after adsorption. The experimental results indicated that efficiency of Cu2+ removal was related to the oscillation rate of the specimen shaker, sorption time, initial pH value and the amount of adsorbent added. Palygorskite induced Cu2+ hydrolysis and interaction between copper hydroxide colloids and palygorskite surfaces, as observed with transmission electron microscopy (TEM), were the main contributions to palygorskite removal of Cu2+. This mechanism was different from adsorption at the mineral-water interface. It was proposed that surface hydrolysis of palygorskite raised the alkalinity of the palygorskite-water interface and suspension system. Thus, the induced pH of the solution was then high enough for Cu2+ hydrolysis on the mineral surface and in solution.展开更多
Catalytic Wet Air Oxidation process is an efficient measure for treatment of wastewater with great strength which is not biodegradable. Heterocatalysts now become the key investigation subject of catalytic wet air oxi...Catalytic Wet Air Oxidation process is an efficient measure for treatment of wastewater with great strength which is not biodegradable. Heterocatalysts now become the key investigation subject of catalytic wet air oxidation process due to their good stability and easy separation. In the paper, CuO-SnO2-CeOγ-Al2O3 catalysts are prepared by impregnation method, with SnO2 as a doping component, CuO as an active component, CeO2 as a structure stabilizer, γ-Al2O3 as a substrate. XPS test is carried out to investigate the effect of Sn on the chemical surrounding of Cu and O element on the catalyst surface and their catalytic activity. It is shown that the right doping of Sn can increase Cu^+ content on the catalyst surface, as a result the quantity of adsorption oxygen is also increased. It is found that Cu^+ content on the catalyst surface is one of the primary factors that determin catalytic activity of catalyst through analyzing the catalytic wet air oxidation process of phenol.展开更多
In this paper, fouling mechanisms of mullite ceramic membranes for treatment of oily wastewaters in hybrid coagulation-microfiltration (MF) process presented. Hermia's models for cross flow filtration were used to ...In this paper, fouling mechanisms of mullite ceramic membranes for treatment of oily wastewaters in hybrid coagulation-microfiltration (MF) process presented. Hermia's models for cross flow filtration were used to investigate the fouling mechanisms of membranes with various coagulating chemicals concentrations. Four coagu lating chemicals (FeC12.4H20, FeSO4.7H20, A1C13-6H20 and A12(SO4)3.18H20) plus Ca(OH)2 of the same concen- tration were evaluated in the coagulation-MF hybrid process with different concentrations (0, 50 mg.L-1, 100 mg.L-1 and 200 mg.L-1). To determine whether the data agree with models under consideration, the coefficients of determination (R2) of all models were compared with one another. In addition, average prediction errors of models were calculated. The results showed that cake filtration model can be applied for prediction of permeation flux decline for MF and coagulation-(MF) hybrid process with the best average error equal to 0.09%. Results indicated that pore blocking behavior changes as time of filtration increases, and one model cannot predict pore blocking behavior in all filtration time with very good precision.展开更多
A new biological aerated filter?lateral flow biological aerated filter(LBAF) is developed. The effects of air/water ratio, hydraulic loading and the length of LBAF on pollutants removal efficiency are tested. The resu...A new biological aerated filter?lateral flow biological aerated filter(LBAF) is developed. The effects of air/water ratio, hydraulic loading and the length of LBAF on pollutants removal efficiency are tested. The results show that under optimal technological conditions when hydraulic loading is 0.43 m3 m?2 h?1 and air/water ratio is 10:1, the average removal efficiencies of COD, SS, NH3-N, and TN reach 88.01%, 95.18%, 78.97% and 52.58%, respectively. An LBAF has a large pollutants handling capacity; is less liable to be blocked, and has a longer operation cycle in comparison with a traditional BAF.展开更多
The catalytic combustion technology for treating waste gases exiting from wastewater treatment system and oil separators in petrochemical enterprises was introduced in this article. Commercial application of this tech...The catalytic combustion technology for treating waste gases exiting from wastewater treatment system and oil separators in petrochemical enterprises was introduced in this article. Commercial application of this technology showed that the process "desulfurization and total hydrocarbon concentration homogenizationcatalytic combustion" and the associated WSH-1 combustion catalyst were suitable for treating volatile organic gases emitted from the oil separators, floatation tanks, inlet water-collecting well, waste oil tanks, etc. The commercial unit was equipped with an advanced auto-control system, featuring a simple operation and low energy consumption with good treatment effect. The purified gases could meet the national emission standard.展开更多
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (20060288008)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (708049)
文摘The removal performance of a basic dye, methylene blue (MB), in aqueous solution was investigated by adsorption process on single-phase and high-crystalline zeolite A (FA-ZA) and X (FA-ZX). Both adsorbents FA-ZA and FA-ZX were synthesized from fly ash prepared aluminosilicate gel followed by the hydrothermal treatment at 100°C with the control of Si/Al molar ratio, respectively. The properties of the synthetic zeolites and commercial grade zeolites, such as thermal stability, elemental composition, and cation exchange capacity, were investigated for comparison. Batch method was used to study the influential parameters, such as initial pH value of the solution, temperatures, and adsorbents dosage, on the adsorption process. The experimental data were well fitted by Ho’ pseudo-second-order model and liquid film diffusion model. The suitability of Langmuir and Freundlich isotherms to the equilibrium data was investigated in the solid-liquid system while the Langmuir model produces the best re-sults. Thermodynamic data (△H, △S, and △G) corresponding to the MB uptake were evaluated from the Langmuir model. In all the adsorption experiments, the adsorption capacity followed the order as follows: FA-ZX > FA-ZA. In addition, attempts were also made to regenerate the adsorbents.
基金1 Project supported by the National Natural Science Foundation of China (Nos. 40472026 and 40072017).
文摘A single-factor experiment of copper ion adsorption on pure palygorskite was carried out to understand the Cu2+ sorption of palygorskite—an important clay mineral in soil and sedimentary rock. In addition, pH of the solution and the surface microstructure of palygorskite were investigated before and after adsorption. The experimental results indicated that efficiency of Cu2+ removal was related to the oscillation rate of the specimen shaker, sorption time, initial pH value and the amount of adsorbent added. Palygorskite induced Cu2+ hydrolysis and interaction between copper hydroxide colloids and palygorskite surfaces, as observed with transmission electron microscopy (TEM), were the main contributions to palygorskite removal of Cu2+. This mechanism was different from adsorption at the mineral-water interface. It was proposed that surface hydrolysis of palygorskite raised the alkalinity of the palygorskite-water interface and suspension system. Thus, the induced pH of the solution was then high enough for Cu2+ hydrolysis on the mineral surface and in solution.
文摘Catalytic Wet Air Oxidation process is an efficient measure for treatment of wastewater with great strength which is not biodegradable. Heterocatalysts now become the key investigation subject of catalytic wet air oxidation process due to their good stability and easy separation. In the paper, CuO-SnO2-CeOγ-Al2O3 catalysts are prepared by impregnation method, with SnO2 as a doping component, CuO as an active component, CeO2 as a structure stabilizer, γ-Al2O3 as a substrate. XPS test is carried out to investigate the effect of Sn on the chemical surrounding of Cu and O element on the catalyst surface and their catalytic activity. It is shown that the right doping of Sn can increase Cu^+ content on the catalyst surface, as a result the quantity of adsorption oxygen is also increased. It is found that Cu^+ content on the catalyst surface is one of the primary factors that determin catalytic activity of catalyst through analyzing the catalytic wet air oxidation process of phenol.
文摘In this paper, fouling mechanisms of mullite ceramic membranes for treatment of oily wastewaters in hybrid coagulation-microfiltration (MF) process presented. Hermia's models for cross flow filtration were used to investigate the fouling mechanisms of membranes with various coagulating chemicals concentrations. Four coagu lating chemicals (FeC12.4H20, FeSO4.7H20, A1C13-6H20 and A12(SO4)3.18H20) plus Ca(OH)2 of the same concen- tration were evaluated in the coagulation-MF hybrid process with different concentrations (0, 50 mg.L-1, 100 mg.L-1 and 200 mg.L-1). To determine whether the data agree with models under consideration, the coefficients of determination (R2) of all models were compared with one another. In addition, average prediction errors of models were calculated. The results showed that cake filtration model can be applied for prediction of permeation flux decline for MF and coagulation-(MF) hybrid process with the best average error equal to 0.09%. Results indicated that pore blocking behavior changes as time of filtration increases, and one model cannot predict pore blocking behavior in all filtration time with very good precision.
基金Funded by the National Basic Science and Technique Foundation During the 10th Five-Year Plan Period (No.2004BA604A01)
文摘A new biological aerated filter?lateral flow biological aerated filter(LBAF) is developed. The effects of air/water ratio, hydraulic loading and the length of LBAF on pollutants removal efficiency are tested. The results show that under optimal technological conditions when hydraulic loading is 0.43 m3 m?2 h?1 and air/water ratio is 10:1, the average removal efficiencies of COD, SS, NH3-N, and TN reach 88.01%, 95.18%, 78.97% and 52.58%, respectively. An LBAF has a large pollutants handling capacity; is less liable to be blocked, and has a longer operation cycle in comparison with a traditional BAF.
文摘The catalytic combustion technology for treating waste gases exiting from wastewater treatment system and oil separators in petrochemical enterprises was introduced in this article. Commercial application of this technology showed that the process "desulfurization and total hydrocarbon concentration homogenizationcatalytic combustion" and the associated WSH-1 combustion catalyst were suitable for treating volatile organic gases emitted from the oil separators, floatation tanks, inlet water-collecting well, waste oil tanks, etc. The commercial unit was equipped with an advanced auto-control system, featuring a simple operation and low energy consumption with good treatment effect. The purified gases could meet the national emission standard.