Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning p...Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.展开更多
During the construction and operation of the abandoned mine pumped storage power station,the underground space surrounding rock body faces the complex stress environment under the action of mining disturbance,frequent...During the construction and operation of the abandoned mine pumped storage power station,the underground space surrounding rock body faces the complex stress environment under the action of mining disturbance,frequent pumping,water storage and other dynamic disturbances.The stability of the abandoned mine surrounding rock body is the basis for guaranteeing the safety and effectiveness of water storage in the underground space of the abandoned mine.By considering the two main factors of different stress levels and disturbance amplitudes,the mechanical properties,damage characteristics and acoustic emission characteristics of the abandoned mine perimeter rock body under dynamic disturbance were investigated using a creep-disturbed dynamic impact loading system.The experimental results show that:1)The stress level is considered to be the major contributing factor of the failure of muddy sandstone,followed by the amplitude of the disturbances;2)The time required for the destruction of muddy sandstone decreases with the increase of amplitude.When the stress level is 80%,the sandstone specimens have a decreasing number of cycles as the disturbance amplitude increases.The disturbance amplitude is sequentially increased from 4 MPa to 5,6,7,and 8 MPa,the number of cycles required for specimen destruction decreases significantly by 96.71%,99.13%,99.60%,and 99.93%,respectively;3)Disturbance amplitude and stress level have a significant effect on muddy sandstone damage and damage occurs only after a certain threshold is reached.With the increase of stress level and disturbance amplitude,the macroscopic damage of muddy sandstone is mainly conical,with obvious flake spalling and poor damage integrity;4)According to the time-dependent changes in AE energy and ringing counts,the acoustic emission activity during the failure process could be divided into three phases,namely,weakening period,smooth period,and surge period,corresponding to the compaction phase,elastic rise phase and post-peak damage phase.The research results are of reference significance for the damage evolution analysis of muddy sandstone under dynamic disturbance and the safety and stability of abandoned mine perimeter rock body.展开更多
Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this wo...Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.展开更多
In order to understand the mechanism and regularity of the groundwater contamination from mine water of abandoned mines, experiments were conducted on an abandoned coal mine in Fuxin, a representative city with lots o...In order to understand the mechanism and regularity of the groundwater contamination from mine water of abandoned mines, experiments were conducted on an abandoned coal mine in Fuxin, a representative city with lots of mine water in northeast China. The groundwater pollution from different contaminants of coal-mining voids (total hardness, SO4^2-, CI^- and total Fe) and pollution factors transportation situation in the coal rock were simulated by soil column experiment under the conditions of mine water leaching and main water leaching (similar to rainwater leaching), and the water-rock interaction mechanism was discussed during mine water infiltration through saturated coal rock by application of principle of mass conservation, based on physical properties of coal rock, as well as monitored chemical composition. The results show that, compared with the clear water leaching process, trends of change in pollutant concentrations presented different characteristics in the mine water leaching process. Groundwater is contaminated by the water rock interactions such as migration & accumulation, adsorption & transformation, dissolution & desorption and ion exchange during the mine water permeation. The experiments also suggest that at first dissolution rate of some kinds of dissoluble salts is high, but it decreases with leaching time, even to zero during both the mine water leaching and main water leaching.展开更多
Based on heterogeneous and porous medium seepage of air leakage-diffusion equation, as well as, gas and porous medium synthesis heat transferring equation, a spontaneous combustion non-steady numerical model of nitrog...Based on heterogeneous and porous medium seepage of air leakage-diffusion equation, as well as, gas and porous medium synthesis heat transferring equation, a spontaneous combustion non-steady numerical model of nitrogen injection goaf was established, which can be solved by upwind finite element numerical simulation method si- multaneously. Taking the working face for example; air leakage seepage, nitrogen flow and gas distribution can be described in visual display in nitrogen injection goaf and the oxygen (O2), carbon monoxide (CO) concentration and temperature distribution, as well as, their change were described in theory during the coal left behind combustion in goaf, which above reveals the complex mechanics course (mechanism) of seepage, diffusion and oxidation heat releasing during coal spontaneous combustion and its restraining. During the calculation, the effect factors of gas springing out and working face advancing were considered fully, and the spontaneous combustion course under different amount of nitrogen injection was simulated. The conclusions were obtained that under nitrogen injection condition, the high spontaneous combustion temperature area lean to the inlet air, but the shape becomes narrower, with the amount of nitrogen rising, the spontaneous combustion period becomes longer till to it does not happen. Meanwhile the nitrogen injection accelerates gas springing out in goaf. The result that turns out in theory simulation fits to practical nitrogen injection.展开更多
基金Project(202208340045)supported by the China Scholarship Council FundProject(U21A20110)supported by the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China+1 种基金Project(EUCMR202201)supported by the Open Project Program of Anhui Engineering Research Center of Exploitation and Utilization of Closed/abandoned Mine Resources,ChinaProject(2023cxcyzx063)supported by the Anhui Province New Era Talent Education Project,China。
文摘Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.
基金Project(52204101)supported by the National Natural Science Foundation of ChinaProject(ZR2022QE137)supported by the Natural Science Foundation of Shandong Province,ChinaProject(SKLGDUEK2023)supported by the Open Project of State Key Laboratory for Geomechanics and Deep Underground Engineering in China University of Mining&Technology,Beijing,China。
文摘During the construction and operation of the abandoned mine pumped storage power station,the underground space surrounding rock body faces the complex stress environment under the action of mining disturbance,frequent pumping,water storage and other dynamic disturbances.The stability of the abandoned mine surrounding rock body is the basis for guaranteeing the safety and effectiveness of water storage in the underground space of the abandoned mine.By considering the two main factors of different stress levels and disturbance amplitudes,the mechanical properties,damage characteristics and acoustic emission characteristics of the abandoned mine perimeter rock body under dynamic disturbance were investigated using a creep-disturbed dynamic impact loading system.The experimental results show that:1)The stress level is considered to be the major contributing factor of the failure of muddy sandstone,followed by the amplitude of the disturbances;2)The time required for the destruction of muddy sandstone decreases with the increase of amplitude.When the stress level is 80%,the sandstone specimens have a decreasing number of cycles as the disturbance amplitude increases.The disturbance amplitude is sequentially increased from 4 MPa to 5,6,7,and 8 MPa,the number of cycles required for specimen destruction decreases significantly by 96.71%,99.13%,99.60%,and 99.93%,respectively;3)Disturbance amplitude and stress level have a significant effect on muddy sandstone damage and damage occurs only after a certain threshold is reached.With the increase of stress level and disturbance amplitude,the macroscopic damage of muddy sandstone is mainly conical,with obvious flake spalling and poor damage integrity;4)According to the time-dependent changes in AE energy and ringing counts,the acoustic emission activity during the failure process could be divided into three phases,namely,weakening period,smooth period,and surge period,corresponding to the compaction phase,elastic rise phase and post-peak damage phase.The research results are of reference significance for the damage evolution analysis of muddy sandstone under dynamic disturbance and the safety and stability of abandoned mine perimeter rock body.
基金Project(8212033)supported by the Natural Science Foundation of Beijing,ChinaProject(BBJ2023051)supported by the Fundamental Research Funds of China University of Mining and Technology-BeijingProject(SKLGDUEK202221)supported by the Innovation Fund Research Project,China。
文摘Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.
基金the National Natural Science Foundation of China(50434020,50374042)Science & Technology Found of Liaoning Province(20022155)Specialized Research Fund for the Doctoral Program of Higher Education(20040147003)
文摘In order to understand the mechanism and regularity of the groundwater contamination from mine water of abandoned mines, experiments were conducted on an abandoned coal mine in Fuxin, a representative city with lots of mine water in northeast China. The groundwater pollution from different contaminants of coal-mining voids (total hardness, SO4^2-, CI^- and total Fe) and pollution factors transportation situation in the coal rock were simulated by soil column experiment under the conditions of mine water leaching and main water leaching (similar to rainwater leaching), and the water-rock interaction mechanism was discussed during mine water infiltration through saturated coal rock by application of principle of mass conservation, based on physical properties of coal rock, as well as monitored chemical composition. The results show that, compared with the clear water leaching process, trends of change in pollutant concentrations presented different characteristics in the mine water leaching process. Groundwater is contaminated by the water rock interactions such as migration & accumulation, adsorption & transformation, dissolution & desorption and ion exchange during the mine water permeation. The experiments also suggest that at first dissolution rate of some kinds of dissoluble salts is high, but it decreases with leaching time, even to zero during both the mine water leaching and main water leaching.
文摘Based on heterogeneous and porous medium seepage of air leakage-diffusion equation, as well as, gas and porous medium synthesis heat transferring equation, a spontaneous combustion non-steady numerical model of nitrogen injection goaf was established, which can be solved by upwind finite element numerical simulation method si- multaneously. Taking the working face for example; air leakage seepage, nitrogen flow and gas distribution can be described in visual display in nitrogen injection goaf and the oxygen (O2), carbon monoxide (CO) concentration and temperature distribution, as well as, their change were described in theory during the coal left behind combustion in goaf, which above reveals the complex mechanics course (mechanism) of seepage, diffusion and oxidation heat releasing during coal spontaneous combustion and its restraining. During the calculation, the effect factors of gas springing out and working face advancing were considered fully, and the spontaneous combustion course under different amount of nitrogen injection was simulated. The conclusions were obtained that under nitrogen injection condition, the high spontaneous combustion temperature area lean to the inlet air, but the shape becomes narrower, with the amount of nitrogen rising, the spontaneous combustion period becomes longer till to it does not happen. Meanwhile the nitrogen injection accelerates gas springing out in goaf. The result that turns out in theory simulation fits to practical nitrogen injection.