期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
利用废锂渣制备碳酸锂
1
《无机化工信息》 2001年第5期33-36,共4页
关键词 废锂渣 碳酸 生产工艺
原文传递
Lithium and manganese extraction from manganese-rich slag originated from pyrometallurgy of spent lithium-ion battery 被引量:5
2
作者 Guo-xing REN Cai-bin LIAO +1 位作者 Zhi-hong LIU Song-wen XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第8期2746-2756,共11页
Mn and Li were selectively extracted from the manganese-rich slag by sulfation roasting−water leaching.The extraction mechanisms of Mn and Li were investigated by means of XRD,TG−DSC,and SEM−EDS.73.71%Mn and 73.28%Li ... Mn and Li were selectively extracted from the manganese-rich slag by sulfation roasting−water leaching.The extraction mechanisms of Mn and Li were investigated by means of XRD,TG−DSC,and SEM−EDS.73.71%Mn and 73.28%Li were leached under optimal experimental conditions:acid concentration of 82 wt.%,acid-to-slag mass ratio of 1.5:1,roasting temperature of 800°C,and roasting time of 2 h.During the roasting process,the manganese-rich slag first reacted with concentrated sulfuric acid,producing MnSO_(4),MnSO_(4)·H_(2)O,Li_(2)Mg(SO_(4))_(2),Al_(2)(SO_(4))_(3),and H_(4)SiO_(4).With the roasting temperature increasing,H_(4)SiO_(4) and Al_(2)(SO_(4))_(3) decomposed successively,resulting in generation of mullite and spinel.The mullite formation aided in decreasing the leaching efficiencies of Al and Si,while increasing the Li leaching efficiency.The formation of spinel,however,decreased the leaching efficiencies of Mn and Li. 展开更多
关键词 spent lithium-ion battery manganese-rich slag sulfation roasting manganese recovery lithium recovery
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部