Cathode material of spent lithium-ion batteries was refined to obtain high value-added cobalt and lithium products based on the chemical behaviors of metal in different oxidation states. The active substances separate...Cathode material of spent lithium-ion batteries was refined to obtain high value-added cobalt and lithium products based on the chemical behaviors of metal in different oxidation states. The active substances separated from the cathode of spent lithium-ion batteries were dissolved in H2SO4 and H2O2 solution, and precipitated as CoC2O4·2H2O microparticles by addition of (NH4)2C2O4. After collection of the CoC2O4·2H2O product by filtration, the Li2CO3 precipitates were obtained by addition of Na2CO3 in the left filtrate. The experimental study shows that 96.3% of Co (mass fraction) and 87.5% of Li can be dissolved in the solution of 2 mol/L H2SO4 and 2.0% H2O2 (volume fraction), and 94.7% of Co and 71.0% of Li can be recovered respectively in the form of CoC2O4·2H2O and Li2CO3.展开更多
In this study,a roasting enhanced flotation process was proposed to recover LiMn_(2)O_(4) and grapite from waste lithium-ion batteries(LIBs).The effects of roasting temperature and time on the surface modification was...In this study,a roasting enhanced flotation process was proposed to recover LiMn_(2)O_(4) and grapite from waste lithium-ion batteries(LIBs).The effects of roasting temperature and time on the surface modification was investigated,and a series of analytical technologies were used to reveal process mechanism.The results indicate that LiMn_(2)O_(4) can be effectively separated from graphite via flotation after the roasting.The flotation grade of LiMn_(2)O_(4) was significantly increased from 63.10%to 91.36%after roasting at 550℃for 2 h.The TG-DTG analysis demonstrates that the difficulty in flotation separation of LiMn_(2)O_(4) from graphite is caused by the organic binder and electrolytes coating on their surfaces.The XRD,SEM,XPS,and contact angle analyses confirm that the organic films on the surfaces of those materials can be effectively removed by roasting,after which the wettability of LiMn_(2)O_(4) is regained and thus the surface wettability difference between the cathode and anode materials is increased significantly.The closed-circuit flotation test indicates that a LiMn_(2)O_(4) sample with high grade of 99.81%is obtained,while the recovery of LiMn_(2)O_(4) is as high as 99.40%.This study provides an economical and eco-friendly way to recycling waste LIBs.展开更多
A process for recovering Co and preparing microspherical Co_(3)O_(4)through NH_(3)distillation and phase transformation from ammoniacal solution was investigated.As the basis of thermodynamics,the solubility of Co at ...A process for recovering Co and preparing microspherical Co_(3)O_(4)through NH_(3)distillation and phase transformation from ammoniacal solution was investigated.As the basis of thermodynamics,the solubility of Co at different NH_(3)and CO_(3)^(2-)concentrations was studied,and then the effects of different NH_(3)distillation conditions on Co recovery rate were discussed.Over 94%Co and 96%NH_(3)were recovered through NH_(3)distillation,and the cobalt was precipitated in form of cobalt carbonate ammonium compound salt.Through the analysis of the formation mechanism of the precursor,the precipitation process of cobalt could be divided into two stages,and the cobalt precipitation rate was significantly accelerated in the second stage.In phase transformation,the effect of temperature on the roasted product was investigated.The microspherical Co_(3)O_(4)with a microporous structure was prepared at 300°C,and Co_(3)O_(4)with a mesoporous structure and high-spin state was obtained at 750°C.展开更多
基金Project (51078286) supported by the National Natural Science Foundation of ChinaProject (2008BAC46B02) supported by the National Key Technologies R&D Program of China+1 种基金Project (2011SQRL110) supported by the Excellent Youth Foundation of Anhui Education Department, ChinaProject (KJ2011z053) supported by the Natural Science Foundation of Anhui Education Department, China
文摘Cathode material of spent lithium-ion batteries was refined to obtain high value-added cobalt and lithium products based on the chemical behaviors of metal in different oxidation states. The active substances separated from the cathode of spent lithium-ion batteries were dissolved in H2SO4 and H2O2 solution, and precipitated as CoC2O4·2H2O microparticles by addition of (NH4)2C2O4. After collection of the CoC2O4·2H2O product by filtration, the Li2CO3 precipitates were obtained by addition of Na2CO3 in the left filtrate. The experimental study shows that 96.3% of Co (mass fraction) and 87.5% of Li can be dissolved in the solution of 2 mol/L H2SO4 and 2.0% H2O2 (volume fraction), and 94.7% of Co and 71.0% of Li can be recovered respectively in the form of CoC2O4·2H2O and Li2CO3.
基金Project(2021JJ20062) supported by the Natural Science Foundation of Hunan Province,ChinaProject(2019XK2304) supported by Landmark Innovation Demonstration Project of Hunan Province,China+3 种基金Project(2022GK4058) supported by High-tech Industry Science and Technology Innovation Leading Project of Hunan Province,ChinaProject(2020CX038) supported by the Innovation Driven Project of Central South University,ChinaProject(2019YFC1907301) supported by the National Key R&D Program of ChinaProject(202006375018) supported by the China Scholarship Council。
文摘In this study,a roasting enhanced flotation process was proposed to recover LiMn_(2)O_(4) and grapite from waste lithium-ion batteries(LIBs).The effects of roasting temperature and time on the surface modification was investigated,and a series of analytical technologies were used to reveal process mechanism.The results indicate that LiMn_(2)O_(4) can be effectively separated from graphite via flotation after the roasting.The flotation grade of LiMn_(2)O_(4) was significantly increased from 63.10%to 91.36%after roasting at 550℃for 2 h.The TG-DTG analysis demonstrates that the difficulty in flotation separation of LiMn_(2)O_(4) from graphite is caused by the organic binder and electrolytes coating on their surfaces.The XRD,SEM,XPS,and contact angle analyses confirm that the organic films on the surfaces of those materials can be effectively removed by roasting,after which the wettability of LiMn_(2)O_(4) is regained and thus the surface wettability difference between the cathode and anode materials is increased significantly.The closed-circuit flotation test indicates that a LiMn_(2)O_(4) sample with high grade of 99.81%is obtained,while the recovery of LiMn_(2)O_(4) is as high as 99.40%.This study provides an economical and eco-friendly way to recycling waste LIBs.
基金financially supported by the National Natural Science Foundation of China (Nos. 52034002, U1802253, 51974025)the Fundamental Research Funds for the Central Universities, China (No. FRF-MP-20-04)
文摘A process for recovering Co and preparing microspherical Co_(3)O_(4)through NH_(3)distillation and phase transformation from ammoniacal solution was investigated.As the basis of thermodynamics,the solubility of Co at different NH_(3)and CO_(3)^(2-)concentrations was studied,and then the effects of different NH_(3)distillation conditions on Co recovery rate were discussed.Over 94%Co and 96%NH_(3)were recovered through NH_(3)distillation,and the cobalt was precipitated in form of cobalt carbonate ammonium compound salt.Through the analysis of the formation mechanism of the precursor,the precipitation process of cobalt could be divided into two stages,and the cobalt precipitation rate was significantly accelerated in the second stage.In phase transformation,the effect of temperature on the roasted product was investigated.The microspherical Co_(3)O_(4)with a microporous structure was prepared at 300°C,and Co_(3)O_(4)with a mesoporous structure and high-spin state was obtained at 750°C.