期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于改进型右边正则度分布序列的低密度纠删码 被引量:1
1
作者 慕建君 王鹏 王新梅 《计算机学报》 EI CSCD 北大核心 2003年第12期1734-1738,共5页
通过对右边正则度分布序列的详细分析之后 ,给出了一种改进型右边正则度分布序列 .证明了基于改进型右边正则度分布序列的级联型低密度纠删码能以任意接近删除信道容量的速率进行传输 .同时指出所构造的级联型低密度纠删码的码率等于给... 通过对右边正则度分布序列的详细分析之后 ,给出了一种改进型右边正则度分布序列 .证明了基于改进型右边正则度分布序列的级联型低密度纠删码能以任意接近删除信道容量的速率进行传输 .同时指出所构造的级联型低密度纠删码的码率等于给定的码率 ,从而克服了基于原来的右边正则度分布序列的级联型低密度纠删码只能通过增大二部图右边结点的度数使得所构造纠删码的码率逼近给定的码率这一缺点 .模拟结果验证了改进型右边正则度分布序列的正确性 . 展开更多
关键词 低密纠删码 改进型右边正则度分布序列 低密校验码 信道编码
下载PDF
低密度纠删码度分布序列的研究
2
作者 慕建君 杨莉 王新梅 《电子学报》 EI CAS CSCD 北大核心 2003年第7期1066-1069,共4页
本文对低密度纠删码的度分布序列进行了研究 ,提出了低密度纠删码度分布序列可达信道容量的充分必要条件 ,给出了Heavy Tail/Poisson和右边正则的两种度分布序列的性质 ,证明了低密度纠删码达信道容量度分布序列的一个分析性质 .
关键词 低密纠删码 删除信道 达信道容量的度分布序列 一致收敛
下载PDF
低密度纠删码度分布序列的若干分析性质
3
作者 慕建君 王新梅 《计算机学报》 EI CSCD 北大核心 2003年第1期60-64,共5页
研究了删除信道中逼近容量的度分布序列 .证明了低密度纠删码的度分布序列为逼近容量序列的充分必要条件 .给出并证明了右边正则度分布序列的若干分析性质 .指出删除信道中逼近容量的度分布序列也应具有某些类似的分析性质 .
关键词 低密纠删码 度分布序列 性质 信道编码
下载PDF
Effect of Topography and Accessibility on Vegetation Dynamic Pattern in Mountain-hill Region 被引量:8
4
作者 QIU Bingwen ZHONG Ming +2 位作者 ZENG Canying TANG Zhenghong CHEN Chongcheng 《Journal of Mountain Science》 SCIE CSCD 2012年第6期879-890,共12页
Knowledge of both vegetation distribution pattern and phenology changes is very important.Their complicated relationship with elevation and accessibility were explored through a geographically weighted regression(GWR)... Knowledge of both vegetation distribution pattern and phenology changes is very important.Their complicated relationship with elevation and accessibility were explored through a geographically weighted regression(GWR) framework in Fujian province,China.The 16-day time series of 250 m Moderate Resolution Imaging Spectroradiometer(MODIS) Enhanced Vegetation Index(EVI) dataset from 2000 to 2010 was applied.Wavelet transform method was adopted to decompose the original time series and construct the annual maximum EVI and amplitude of the annual phenological cycle(EVI).Candidate explaining factors included topographic conditions,accessibility variables and proportions of primary vegetation types.Results revealed very strong positive influence from parameters of elevation and accessibility to big rivers and negative effect from accessibility to resident on both maximum EVI and phenological magnitude through ordinary linear least square(OLS) regression analysis.GWR analysis revealed that spatially,the parameters of topography and accessibility had a very complex relationship with both maximum EVI and phenology magnitude,as a result of the various combinations of environmental factors,vegetation composition and also intensive anthropogenic impact.Apart from the continuously increasing trend of phenology magnitude with increasing altitude,the influence of topography and accessibility on maximum EVI and phenological magnitude generally decreased,even from strongly positive to negative,with increasing altitude or distance.Specially,the most rapid change of correlation coefficient between them was observed within a low elevation or close distance;less variation was discovered within a certain range of medium altitude or distance and their relationship might change above this range.Non-stationary approaches are needed to better characterize the complex vegetation dynamic pattern in Mountain-hill Region. 展开更多
关键词 Vegetation phenology Elevation gradient ACCESSIBILITY Geographic weighted regression Enhanced Vegetation Index Spatial non-stationality
下载PDF
Realization of finite precision chaotic systems via internal perturbation
5
作者 李德志 Wang Zhenyong +1 位作者 Gu Xuemai Guo Qing 《High Technology Letters》 EI CAS 2013年第4期346-352,共7页
A method of controllable internal perturbation inside the chaotic map is proposed to solve the problem in chaotic systems caused by finite precision.A chaotic system can produce large amounts of initial-sensitive,non-... A method of controllable internal perturbation inside the chaotic map is proposed to solve the problem in chaotic systems caused by finite precision.A chaotic system can produce large amounts of initial-sensitive,non-cyclical pseudo-random sequences.However,the finite precision brings short period and odd points which obstruct application of chaos theory seriously in digital communication systems.Perturbation in chaotic systems is a possible efficient method for solving finite precision problems,but former researches are limited in uniform distribution maps.The proposed internal perturbation can work on both uniform and non-uniform distribution chaotic maps like Chebyshev map and Logistic map.By simulations,results show that the proposed internal perturbation extends sequence periods and eliminates the odd points,so as to improve chaotic performances of perturbed chaotic sequences. 展开更多
关键词 finite precision internal perturbation chaotic system
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部