模具表面改性日益受到人们重视。本文采用二维Particle-in-cell/Monte Carlo Collision模型对等离子体浸没离子注入处理凹模型腔内表面的鞘层动力学及均匀性进行了研究。考察了电压脉宽对鞘层中电势分布、离子的运动状态以及型腔内表面...模具表面改性日益受到人们重视。本文采用二维Particle-in-cell/Monte Carlo Collision模型对等离子体浸没离子注入处理凹模型腔内表面的鞘层动力学及均匀性进行了研究。考察了电压脉宽对鞘层中电势分布、离子的运动状态以及型腔内表面离子注入剂量、能量和角度的空间分布的影响。结果表明随着电压脉宽的增加,凹模型腔内表面的注入剂量不均匀性增加,同时注入到内表面的高能离子数目也增加。脉冲宽度变化对注入角度影响不大,离子以接近垂直的入射角度注入到型腔底部,而在侧壁上离子注入角度接近45°。当脉冲宽度较大时,发现少部分注入到侧壁上的离子以一定角度从下往上注入到样品表面,这是由于碰撞效应造成的。从能量和剂量的角度,存在一个合适的脉冲宽度,过大的脉宽会引起剂量不均匀性增加,同时离子注入能量也会下降。展开更多
Structural uniformity is an important parameter influencing physical and mechanical properties of lotus-type porous metals prepared by directional solidification of metal-gas eutectic (Gasar). The effect of superheat ...Structural uniformity is an important parameter influencing physical and mechanical properties of lotus-type porous metals prepared by directional solidification of metal-gas eutectic (Gasar). The effect of superheat on structural uniformity as well as average porosity, pore morphology of porous metals was studied. The experimental results show that, when the superheat is higher than a critical value (ΔTc), the bubbling or boiling phenomenon will occur and the gas bubbles will form in the melt and float out of the melt. As a result, the final porosity will decrease. In addition, a higher superheat will simultaneously cause a non-uniform porous structure due to the pores coalescence and bubbling phenomenon. Finally, a theoretical model was developed to predict the critical superheat for the hydrogen to escape from the melt and the corresponding escapement ratio of hydrogen content. Considering the escapement of hydrogen, the predicted porosities are in good agreement with the experimental results.展开更多
The face velocities of the high efficiency particulate air filters and the ultra low penetration airfilters in fan filter units (FFUs) have large relative standard deviation and turbulivity. It seriously affects the ...The face velocities of the high efficiency particulate air filters and the ultra low penetration airfilters in fan filter units (FFUs) have large relative standard deviation and turbulivity. It seriously affects the unidirectivity of the flow in the unidirectional flow clean zone and cleanroom. The cross contamination in this kind of unidirectional flow area is hardly controlled. It is significant to find optional method for keeping the face velocity uniformity of FFU and reducing the face velocity turbulivity of FFU, furthermore, to keep the cleanliness level under FFUs. The normal and easy method is to add flow rectifiers under filters. FFUs with various flow rectifiers have been tested. The uniformity and turbulivity of facevelocity under the FFU are presented in this paper. The influence of the facevelocity uniformity and turbulivity on the contamination boundary of the unidirectional flow is studiedas well.展开更多
In order to analyze the heterogeneity in vehicular traffic speed, a new method that integrates cluster analysis and probability distribution function fitting is presented. First, for identifying the optimal number of ...In order to analyze the heterogeneity in vehicular traffic speed, a new method that integrates cluster analysis and probability distribution function fitting is presented. First, for identifying the optimal number of clusters, the two-step cluster method is applied to analyze actual speed data, which suggests that dividing speed data into two clusters can best reflect the intrinsic patterns of traffic flows. Such information is then taken as guidance in probability distribution function fitting. The normal, skew-normal and skew-t distribution functions are used to fit the probability distribution of each cluster respectively, which suggests that the skew-t distribution has the highest fitting accuracy; the second is skew-normal distribution; the worst is normal distribution. Model analysis results demonstrate that the proposed mixture model has a better fitting and generalization capability than the conventional single model. In addition, the new method is more flexible in terms of data fitting and can provide a more accurate model of speed distribution.展开更多
Ultra thin epitaxial CoSi 2 films are fabricated by solid state reaction of a deposited bilayer of Co(3nm)/Ti (1nm) on n Si(100) substrates at different temperatures.The local barrier heights of the CoSi 2/Si cont...Ultra thin epitaxial CoSi 2 films are fabricated by solid state reaction of a deposited bilayer of Co(3nm)/Ti (1nm) on n Si(100) substrates at different temperatures.The local barrier heights of the CoSi 2/Si contacts are determined by using the ballistic electron emission microscopy (BEEM) and its spectroscopy (BEES) at low temperature.For CoSi 2/Si contact annealed at 800℃,the spatial distribution of barrier heights,which have mean barrier height of 599meV and a standard deviation of 21meV,obeys the Gaussian Function.However,for a sample that is annealed at 700℃,the barrier heights of it are more inhomogenous.Its local barrier heights range from 152meV to 870meV,which implies the large inhomogeneity of the CoSi 2 film.展开更多
The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show t...The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show that the quench sensitivity of 6063 alloy is lower than that of 6061 or 6082 alloy,and the critical temperature ranges from 300 to 410℃ with the nose temperature of about 360℃.From TEM analysis,heterogeneous precipitate β-Mg2Si is prior to nucleate on the(AlxFeySiz) dispersoids in the critical temperature range,and grows up most rapidly at the nose temperature of 360℃.The heterogeneous precipitation leads to a low concentration of solute,which consequently reduces the amount of the strengthening phase β'' after aging.In the large-scale industrial production of 6063 alloy,the cooling rate during quenching should be enhanced as high as possible in the quenching sensitive temperature range(410-300℃) to suppress the heterogeneous precipitation to get optimal mechanical properties,and it should be slowed down properly from the solution temperature to 410℃ and below 300℃ to reduce the residual stress.展开更多
Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study th...Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study the influences of theroute type, namely A and B, and pass number on mechanical properties of the material. The process was conducted up to 6 passeswith decreasing process temperature, specifically from 573 to 473 K. Supplementary experiments involving metallography, hardnessand tensile tests were carried out in order to evaluate the effects of the process variables. The hardness measurements exhibitedreasonably uniform distributions within the product with a maximum increase of 64% via a 6-pass operation. The yield and ultimatestrengths also amended 107% and 46%, respectively. These significant improvements were attributed to the severe shear deformationof grains and decreasing pass temperature, which intensified the grain refinement. TEM images showed an average grain sizereduction from 100 μm for the annealed billet to 200 nm after 6 passes of DECLE. Finally, the experimental findings for routes A andB were compared and discussed and some important conclusions were drawn.展开更多
The microhardness curve trend and its relationships with microstructure and misorientation were analyzed to enhance the comprehension of the microstructure and mechanical property of micro-areas in Ti6 Al4 V laser-wel...The microhardness curve trend and its relationships with microstructure and misorientation were analyzed to enhance the comprehension of the microstructure and mechanical property of micro-areas in Ti6 Al4 V laser-welded joints with different welding speeds. The microhardness measured on the fusion line(H_m) is the highest from the weld center to the base metal. H_m increases with increasing weld width in a welded joint and increasing degree of the non-uniformity in all studied welded joints. The microhardness decreases from the weld metal to the base metal with decreasing amount of martensite α’ and increasing amount of original α phase. When the microstructure is mainly composed of martensite α’, the microhardness changes with the cooling rate, grain size of the martensite, and peak values of the fraction of misorientation angle of the martensite in a wide weld metal zone or weld center at different welding speeds, whereas the difference is small in a narrow weld metal zone.展开更多
Rigid-viscoplastic3D finite element simulations(3D FEM)of the equal channel angular pressing(ECAP),thecombination of ECAP+extrusion with different extrusion ratios,and direct extrusion of pure aluminum were performed ...Rigid-viscoplastic3D finite element simulations(3D FEM)of the equal channel angular pressing(ECAP),thecombination of ECAP+extrusion with different extrusion ratios,and direct extrusion of pure aluminum were performed andanalyzed.The3D FEM simulations were carried out to investigate the load-displacement behavior,the plastic deformationcharacteristics and the effective plastic strain homogeneity of Al-1080deformed by different forming processes.The simulationresults were validated by microstructure observations,microhardness distribution maps and the correlation between the effectiveplastic strain and the microhardness values.The3D FEM simulations were performed successfully with a good agreement with theexperimental results.The load-displacement curves and the peak load values of the3D FEM simulations and the experimentalresults were close from each other.The microhardness distribution maps were in a good conformity with the effective plastic straincontours and verifying the3D FEM simulations results.The ECAP workpiece has a higher degree of deformation homogeneity thanthe other deformation processes.The microhardness values were calculated based on the average effective plastic strain.Thepredicted microhardness values fitted the experimental results well.The microstructure observations in the longitudinal andtransverse directions support the3D FEM effective plastic strain and microhardness distributions result in different formingprocesses.展开更多
文摘模具表面改性日益受到人们重视。本文采用二维Particle-in-cell/Monte Carlo Collision模型对等离子体浸没离子注入处理凹模型腔内表面的鞘层动力学及均匀性进行了研究。考察了电压脉宽对鞘层中电势分布、离子的运动状态以及型腔内表面离子注入剂量、能量和角度的空间分布的影响。结果表明随着电压脉宽的增加,凹模型腔内表面的注入剂量不均匀性增加,同时注入到内表面的高能离子数目也增加。脉冲宽度变化对注入角度影响不大,离子以接近垂直的入射角度注入到型腔底部,而在侧壁上离子注入角度接近45°。当脉冲宽度较大时,发现少部分注入到侧壁上的离子以一定角度从下往上注入到样品表面,这是由于碰撞效应造成的。从能量和剂量的角度,存在一个合适的脉冲宽度,过大的脉宽会引起剂量不均匀性增加,同时离子注入能量也会下降。
基金Project(51271096)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0310)supported by the Program for New Century Excellent Talents in University,Ministry of Education,China
文摘Structural uniformity is an important parameter influencing physical and mechanical properties of lotus-type porous metals prepared by directional solidification of metal-gas eutectic (Gasar). The effect of superheat on structural uniformity as well as average porosity, pore morphology of porous metals was studied. The experimental results show that, when the superheat is higher than a critical value (ΔTc), the bubbling or boiling phenomenon will occur and the gas bubbles will form in the melt and float out of the melt. As a result, the final porosity will decrease. In addition, a higher superheat will simultaneously cause a non-uniform porous structure due to the pores coalescence and bubbling phenomenon. Finally, a theoretical model was developed to predict the critical superheat for the hydrogen to escape from the melt and the corresponding escapement ratio of hydrogen content. Considering the escapement of hydrogen, the predicted porosities are in good agreement with the experimental results.
文摘The face velocities of the high efficiency particulate air filters and the ultra low penetration airfilters in fan filter units (FFUs) have large relative standard deviation and turbulivity. It seriously affects the unidirectivity of the flow in the unidirectional flow clean zone and cleanroom. The cross contamination in this kind of unidirectional flow area is hardly controlled. It is significant to find optional method for keeping the face velocity uniformity of FFU and reducing the face velocity turbulivity of FFU, furthermore, to keep the cleanliness level under FFUs. The normal and easy method is to add flow rectifiers under filters. FFUs with various flow rectifiers have been tested. The uniformity and turbulivity of facevelocity under the FFU are presented in this paper. The influence of the facevelocity uniformity and turbulivity on the contamination boundary of the unidirectional flow is studiedas well.
基金The National Science Foundation by Changjiang Scholarship of Ministry of Education of China(No.BCS-0527508)the Joint Research Fund for Overseas Natural Science of China(No.51250110075)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK200910046)the Postdoctoral Science Foundation of Jiangsu Province(No.0901005C)
文摘In order to analyze the heterogeneity in vehicular traffic speed, a new method that integrates cluster analysis and probability distribution function fitting is presented. First, for identifying the optimal number of clusters, the two-step cluster method is applied to analyze actual speed data, which suggests that dividing speed data into two clusters can best reflect the intrinsic patterns of traffic flows. Such information is then taken as guidance in probability distribution function fitting. The normal, skew-normal and skew-t distribution functions are used to fit the probability distribution of each cluster respectively, which suggests that the skew-t distribution has the highest fitting accuracy; the second is skew-normal distribution; the worst is normal distribution. Model analysis results demonstrate that the proposed mixture model has a better fitting and generalization capability than the conventional single model. In addition, the new method is more flexible in terms of data fitting and can provide a more accurate model of speed distribution.
文摘Ultra thin epitaxial CoSi 2 films are fabricated by solid state reaction of a deposited bilayer of Co(3nm)/Ti (1nm) on n Si(100) substrates at different temperatures.The local barrier heights of the CoSi 2/Si contacts are determined by using the ballistic electron emission microscopy (BEEM) and its spectroscopy (BEES) at low temperature.For CoSi 2/Si contact annealed at 800℃,the spatial distribution of barrier heights,which have mean barrier height of 599meV and a standard deviation of 21meV,obeys the Gaussian Function.However,for a sample that is annealed at 700℃,the barrier heights of it are more inhomogenous.Its local barrier heights range from 152meV to 870meV,which implies the large inhomogeneity of the CoSi 2 film.
文摘The quench sensitivity of 6063 alloy was investigated via constructing time-temperature-property(TTP) curves by interrupted quenching technique and transmission electron microscopy(TEM) analysis.The results show that the quench sensitivity of 6063 alloy is lower than that of 6061 or 6082 alloy,and the critical temperature ranges from 300 to 410℃ with the nose temperature of about 360℃.From TEM analysis,heterogeneous precipitate β-Mg2Si is prior to nucleate on the(AlxFeySiz) dispersoids in the critical temperature range,and grows up most rapidly at the nose temperature of 360℃.The heterogeneous precipitation leads to a low concentration of solute,which consequently reduces the amount of the strengthening phase β'' after aging.In the large-scale industrial production of 6063 alloy,the cooling rate during quenching should be enhanced as high as possible in the quenching sensitive temperature range(410-300℃) to suppress the heterogeneous precipitation to get optimal mechanical properties,and it should be slowed down properly from the solution temperature to 410℃ and below 300℃ to reduce the residual stress.
基金partially supported by the Iran National Science Foundation(INSF) with grant number 92014140
文摘Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study the influences of theroute type, namely A and B, and pass number on mechanical properties of the material. The process was conducted up to 6 passeswith decreasing process temperature, specifically from 573 to 473 K. Supplementary experiments involving metallography, hardnessand tensile tests were carried out in order to evaluate the effects of the process variables. The hardness measurements exhibitedreasonably uniform distributions within the product with a maximum increase of 64% via a 6-pass operation. The yield and ultimatestrengths also amended 107% and 46%, respectively. These significant improvements were attributed to the severe shear deformationof grains and decreasing pass temperature, which intensified the grain refinement. TEM images showed an average grain sizereduction from 100 μm for the annealed billet to 200 nm after 6 passes of DECLE. Finally, the experimental findings for routes A andB were compared and discussed and some important conclusions were drawn.
基金Project(51875442)supported by the National Natural Science Foundation of China。
文摘The microhardness curve trend and its relationships with microstructure and misorientation were analyzed to enhance the comprehension of the microstructure and mechanical property of micro-areas in Ti6 Al4 V laser-welded joints with different welding speeds. The microhardness measured on the fusion line(H_m) is the highest from the weld center to the base metal. H_m increases with increasing weld width in a welded joint and increasing degree of the non-uniformity in all studied welded joints. The microhardness decreases from the weld metal to the base metal with decreasing amount of martensite α’ and increasing amount of original α phase. When the microstructure is mainly composed of martensite α’, the microhardness changes with the cooling rate, grain size of the martensite, and peak values of the fraction of misorientation angle of the martensite in a wide weld metal zone or weld center at different welding speeds, whereas the difference is small in a narrow weld metal zone.
文摘Rigid-viscoplastic3D finite element simulations(3D FEM)of the equal channel angular pressing(ECAP),thecombination of ECAP+extrusion with different extrusion ratios,and direct extrusion of pure aluminum were performed andanalyzed.The3D FEM simulations were carried out to investigate the load-displacement behavior,the plastic deformationcharacteristics and the effective plastic strain homogeneity of Al-1080deformed by different forming processes.The simulationresults were validated by microstructure observations,microhardness distribution maps and the correlation between the effectiveplastic strain and the microhardness values.The3D FEM simulations were performed successfully with a good agreement with theexperimental results.The load-displacement curves and the peak load values of the3D FEM simulations and the experimentalresults were close from each other.The microhardness distribution maps were in a good conformity with the effective plastic straincontours and verifying the3D FEM simulations results.The ECAP workpiece has a higher degree of deformation homogeneity thanthe other deformation processes.The microhardness values were calculated based on the average effective plastic strain.Thepredicted microhardness values fitted the experimental results well.The microstructure observations in the longitudinal andtransverse directions support the3D FEM effective plastic strain and microhardness distributions result in different formingprocesses.