期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
地震作用下土质边坡稳定性分析方法适用性分析 被引量:14
1
作者 江德军 杨杰 +1 位作者 乔蓓 郑成成 《水电能源科学》 北大核心 2013年第12期113-116,共4页
针对地震作用下边坡稳定分析方法之间的差异及其适用情况尚不明确的问题,以某三级均质土坡为例,基于Quake/w、Geo-Studio、PLAXIS以及FLAC等软件,利用拟静力法、Newmark滑块分析法、动力有限元时程分析法、动力有限元强度折减法及有限... 针对地震作用下边坡稳定分析方法之间的差异及其适用情况尚不明确的问题,以某三级均质土坡为例,基于Quake/w、Geo-Studio、PLAXIS以及FLAC等软件,利用拟静力法、Newmark滑块分析法、动力有限元时程分析法、动力有限元强度折减法及有限差分强度折减法计算出安全系数,对比了5种方法的异同。结果表明,采用拟静力法获得的边坡抗震稳定性偏于安全;Newmark滑块分析法、动力有限元时程分析法计算的安全系数基本相同;动力有限元与有限差分强度折减法计算所得的安全系数相近,但在不同折减系数下计算的监测点位移相差较大。 展开更多
关键词 地震作用 边坡稳定性 拟静力法 Newmark滑块分析法 动力有限元时程分析法 动力有限元强 度折减法 有限差分强度折减法
下载PDF
基于FLAC^(3D)的隧道洞口滑坡防治技术优化研究 被引量:3
2
作者 熊文林 《交通科技》 2015年第4期86-89,共4页
结合栗石沟隧道洞口滑坡实际水文、工程地质条件,通过强度折减法对隧道洞口边坡在自然状态、边坡坡脚开挖和削坡卸载等6种工况下的稳定性进行了数值模拟分析和评价,并结合实际工作经验和数值模拟计算结果,提出对该滑坡体采取削坡2m+表... 结合栗石沟隧道洞口滑坡实际水文、工程地质条件,通过强度折减法对隧道洞口边坡在自然状态、边坡坡脚开挖和削坡卸载等6种工况下的稳定性进行了数值模拟分析和评价,并结合实际工作经验和数值模拟计算结果,提出对该滑坡体采取削坡2m+表面喷浆及锚杆支护相结合的处治方案,同时加强洞口坡面排水、坡面和隧道内的变形监测。为工程安全施工提供依据,也为山区隧道洞口开挖提供借鉴。 展开更多
关键词 边坡稳定性 度折减法 数值模拟 防治措施
下载PDF
近场动力学方法在边坡稳定性分析中的应用 被引量:7
3
作者 廖洋 刘立胜 +3 位作者 刘齐文 赖欣 池晴佳 邵爱军 《安全与环境工程》 CAS 北大核心 2018年第1期45-50,共6页
有限元强度折减法在边坡稳定性分析中有着广泛的应用,以近场动力学方法代替有限元法,可以在有限元求解不收敛的情况下得到边坡失稳状态下的滑移趋势。基于非关联流动法则,可以得到摩尔-库仑屈服模型的近场动力学应力更新算法。以边坡系... 有限元强度折减法在边坡稳定性分析中有着广泛的应用,以近场动力学方法代替有限元法,可以在有限元求解不收敛的情况下得到边坡失稳状态下的滑移趋势。基于非关联流动法则,可以得到摩尔-库仑屈服模型的近场动力学应力更新算法。以边坡系统的最大位移为失效判据,建立了边坡的最大位移与折减系数之间的关系曲线,可以得到边坡的安全系数以及边坡的滑移面。以引江济汉工程边坡为研究对象,利用近场动力学强度折减法分别计算了边坡比为1∶2和1∶2.5两种工况下边坡的最大水平位移以及边坡的塑性应变分布情况,所得到的计算结果与实际施工情况基本一致,表明该近场动力学强度折减法可用于分析边坡的稳定性问题。 展开更多
关键词 边坡 稳定性分析 安全系数 近场动力学方法'虽度折减法 屈服准则
下载PDF
Simulation analysis on three-dimensional slope failure under different conditions 被引量:9
4
作者 张科 曹平 +2 位作者 刘紫曜 胡惠华 龚道平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第11期2490-2502,共13页
The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditi... The failure mechanism of two-dimensional(2D) and three-dimensional(3D) slopes were investigated by using the strength reduction method.An extensive study of 3D effect was conducted with respect to boundary conditions,shear strength and concentrated surcharge load.The results obtained by 2D and 3D analyses were compared and the applicable scope of 2D and 3D method was analyzed.The results of the numerical simulation show that 3D effect is sensitive to the width of slip surface.As for slopes with specific geometry,3D effect is influenced by dimensionless parameter c/(γHtanφ).For those infinite slopes with local loading,external load has the major impact on failure mode.For those slopes with local loading and geometric constraints,the failure mode is influenced by both factors.With the increase of loading length,boundary condition exerts a more significant impact on the failure mode,and then 2D and 3D stability charts are developed,which provides a rapid and reliable way to calculate 2D and 3D factor of safety without iteration.Finally,a simple and practical calculation procedure based on the study of 3D effect and stability charts is proposed to recognize the right time to apply 2D or 3D method. 展开更多
关键词 three-dimensional slope slope stability three-dimensional effect strength reduction method failure mechanism
下载PDF
A strength reduction method based on double reduction parameters and its application 被引量:40
5
作者 袁维 白冰 +1 位作者 李小春 汪海滨 《Journal of Central South University》 SCIE EI CAS 2013年第9期2555-2562,共8页
In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of... In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of the cohesion and friction angle on the stability of the same slope and is defective to some extent.Regarding this defect,a strength reduction method based on double reduction parameters,which adopts different reduction parameters,is proposed.The core of the double-parameter reduction method is the matching reduction principle of the slope with different angles.This principle is represented by the ratio of the reduction parameter of the cohesion to that of the friction angle,described as η.With the increase in the slopeangle,ηincreases; in particular,when the slope angle is 45°,tηis 1.0.Through the matching reduction principle,different safety margin factors can be calculated for the cohesion and friction angle.In combination with these two safety margin factors,a formula for calculating the overall safety factor of the slope is proposed,reflecting the different contributions of the cohesion and friction angle to the slope stability.Finally,it is shown that the strength reduction method based on double reduction parameters acquires a larger safety factor than the classic limit equilibrium method,but the calculation results are very close to those obtained by the limit equilibrium method. 展开更多
关键词 double reduction parameter strength reduction method matching reduction principle slope stability
下载PDF
A new double reduction method for slope stability analysis 被引量:15
6
作者 白冰 袁维 李小春 《Journal of Central South University》 SCIE EI CAS 2014年第3期1158-1164,共7页
The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a ... The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63° and 34° respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required. 展开更多
关键词 slope stability strength reduction method double strength reduction method factor of safety limit equilibrium method
下载PDF
Infiltration regulation and stability analysis of soil slope under sustained and small intensity rainfall 被引量:16
7
作者 刘子振 言志信 +1 位作者 段建 邱战洪 《Journal of Central South University》 SCIE EI CAS 2013年第9期2519-2527,共9页
Rainfall infiltration depth and mode can severely influence slope stability.With the sustained rainfall,the influenced region of slope gradually expands.By using the Green-Ampt model to the soil slope,infiltration reg... Rainfall infiltration depth and mode can severely influence slope stability.With the sustained rainfall,the influenced region of slope gradually expands.By using the Green-Ampt model to the soil slope,infiltration regulation was discussed under sustained and small intensity rainfall.And the infiltration rate of unsaturated soil was proposed according to the saturated infiltration theory.Because of the changing of initial moisture content in depth of slope,the saturated or unsaturated infiltration rate and depth could also be changeable with the sustained rainfall infiltration.Based on the principle of strength reduction,the calculation model of slope safety factor was established under different initial moisture contents and infiltration modes.Then,the slope stability was quantitatively analyzed through software FLAC3D.The calculation results of soil slope engineering show that there is a shorter period for slope stability under different initial moisture contents and unsaturated infiltration ways at the slope wetting front.The stability period of slope is 33.3%according to different initial moisture contents of wetting front less than that of the same initial moisture content of wetting front.And the slope is easier to fail under the unsaturated infiltration.The results agree well with the actual situation under sustained and small intensity rainfall. 展开更多
关键词 small intensity rainfall soil slope infiltration depth safety factor
下载PDF
Progressive Modelling of the Gravity-induced Landslide Using the Local Dynamic Strength Reduction Method 被引量:10
8
作者 CHEN Guo-qing HUANG Run-qiu +2 位作者 XU Qiang LI Tian-bin ZHU Ming-lei 《Journal of Mountain Science》 SCIE CSCD 2013年第4期532-540,共9页
The failure of slope is a progressive process, and the whole sliding surface is caused by the gradual softening of soil strength of the potential sliding surface. From this viewpoint, a local dynamic strength reductio... The failure of slope is a progressive process, and the whole sliding surface is caused by the gradual softening of soil strength of the potential sliding surface. From this viewpoint, a local dynamic strength reduction method is proposed to capture the progressive failure of slope. This method can calculate the warning deformation of landslide in this study. Only strength parameters of the yielded zone of landslide will be reduced by using the method. Through continuous local reduction of the strength parameters of the yielded zone, the potential sliding surface developed gradually and evolved to breakthrough finally. The result shows that the proposed method can simulate the progressive failure of slope truly. The yielded zone and deformation of landslide obtained by the method are smaller than those of overall strength reduction method. The warning deformation of landslide can be obtained by using the local dynamic strength reduction method which is based on the softening characteristics of the sliding surface. 展开更多
关键词 LANDSLIDE Local dynamic reduction Warning deformation Strength softening Progressive failure
下载PDF
Limit analysis of vertical anti-pulling screw pile group under inclined loading on 3D elastic-plastic finite element strength reduction method 被引量:11
9
作者 董天文 郑颖人 《Journal of Central South University》 SCIE EI CAS 2014年第3期1165-1175,共11页
Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the... Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (Css) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined 10adings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But .the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered. 展开更多
关键词 strength reduction method screw pile group ultimate load inclined loading
下载PDF
Slope analysis based on local strength reduction method and variable-modulus elasto-plastic model 被引量:4
10
作者 杨光华 钟志辉 +3 位作者 傅旭东 张玉成 温勇 张明飞 《Journal of Central South University》 SCIE EI CAS 2014年第5期2041-2050,共10页
Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).How... Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method. 展开更多
关键词 slope stability local strength reduction method variable-modulus elasto-plastic model in-situ test
下载PDF
New methods of safety evaluation for rock/soil mass surrounding tunnel under earthquake 被引量:1
11
作者 程选生 DOWDING Charles H 田瑞瑞 《Journal of Central South University》 SCIE EI CAS 2014年第7期2935-2943,共9页
The objective of this work is to obtain the seismic safety coefficient and fracture surface and proceed with the seismic safety evaluation for the rock mass or soil mass surrounding a tunnel,and the limitation of eval... The objective of this work is to obtain the seismic safety coefficient and fracture surface and proceed with the seismic safety evaluation for the rock mass or soil mass surrounding a tunnel,and the limitation of evaluating seismic stability is considered using the pseudo-static strength reduction.By using the finite element software ANSYS and the strength reduction method,new methods of seismic safety evaluation for the rock mass or soil mass surrounding a tunnel are put forward,such as the dynamic finite element static shear strength reduction method and dynamic finite element shear strength reduction method.In order to prove the feasibility of the proposed methods,the results of numerical examples are compared with that of the pseudo-static strength reduction method.The results show that 1) the two methods are both feasible,and the plastic zone first appears near the bottom corners; 2) the safety factor of new method Ⅱ is smaller than that of new method I but generally,and the difference is very small.Therefore,in order to ensure the safety of the structure,two new methods are proposed to evaluate the seismic stability of the rock mass or soil mass surrounding a tunnel.A theoretical basis is provided for the seismic stability of the rock mass or soil mass and the lining surrounding a tunnel and also provided for the engineering application. 展开更多
关键词 TUNNEL rock or soil mass surrounding tunnel earthquake stability safety evaluation
下载PDF
Safety assessment of waste rock dump built on existing tailings ponds 被引量:2
12
作者 李全明 袁会娜 钟茂华 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2707-2718,共12页
The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste roc... The construction of waste rock dumps on existing tailing ponds has been put into practice in China to save precious land resources. This work focuses on the safety assessment of the Daheishan molybdenum mine waste rock dump under construction on two adjoining tailings ponds. The consolidation of the tailings foundation and the filling quality of the waste rock are investigated by the transient electromagnetic method through detecting water-rich areas and loose packing areas, from which, the depth of phreatic line is also estimated. With such information and the material parameters, the numerical method based on shear strength reduction is applied to analyzing the overall stability of the waste rock dump and the tailings ponds over a number of typical cross sections under both current and designed conditions, where the complex geological profiles exposed by site investigation are considered. Through numerical experiments, the influence of soft lenses in the tailings and possible loose packing areas in the waste rock is examined. Although large displacements may develop due to the soft tailings foundation, the results show that the waste rock dump satisfies the safety requirements under both present and designed conditions. 展开更多
关键词 waste rock dump tailings pond safety assessment transient electromagnetic method stability analysis
下载PDF
New method of designing anti-slide piles——the strength reduction FEM 被引量:3
13
作者 Zheng Yingren Zhao Shanyi +1 位作者 Lei Wenjie Tang Xiaosong 《Engineering Sciences》 EI 2010年第3期2-11,共10页
At present,the thrust of an anti-slide pile can be worked out with some calculation methods. However,the resistance in front of the pile,the distributions of resistance and thrust,and appropriate pile length cannot be... At present,the thrust of an anti-slide pile can be worked out with some calculation methods. However,the resistance in front of the pile,the distributions of resistance and thrust,and appropriate pile length cannot be easily obtained. In this paper,the authors applied the strength-reduction finite element method (FEM) to several design cases of anti-slide piles. Using this method,it is possible to take the pile-soil interactions into consideration,obtain reasonable resistance in front of pile and the distributions of thrust and resistance,and reasonable lengths of anti-slide piles. In particular,the thrust and resistance imposed on embedded anti-slide piles can be calculated and composite anti-slide pile structures such as anchored piles and braced piles can be optimized. It is proved through the calculation examples that this method is more reliable and economical in the design of anti-slide pile. 展开更多
关键词 strength reduction method finite element method anti-slide piles sub-grade reaction embedded piles
下载PDF
Research on the stability analysis and design of soil tunnel surrounding rock 被引量:2
14
作者 Zheng Yingren Qiu Chenyu Xiao Qiang 《Engineering Sciences》 EI 2010年第3期57-70,共14页
The paper first analyzes the failure mechanism and mode of tunnel according to model experiments and mechanical calculation and then discusses the deficiency of taking the limit value of displacement around the tunnel... The paper first analyzes the failure mechanism and mode of tunnel according to model experiments and mechanical calculation and then discusses the deficiency of taking the limit value of displacement around the tunnel and the size of the plastic zone of surrounding rock as the criterion of stability. So the writers put forward the idea that the safety factor of surrounding rock calculated through strength reduction FEM(finit element method) should be regarded as the criterion of stability,which has strict mechanical basis and unified standard and would not be influenced by other factors. The paper also studies the safety factors of tunnel surrounding rock (safety factors of shear and tension failure) and lining and some methods of designing and calculating tunnels. At last,the writers take the loess tunnel for instance and show the design and calculation results of two-lane railway tunnel. 展开更多
关键词 stability of tunnel surrounding rock strength reduction FEM safety factor of shear safety factor of tension failure design method of tunnel
下载PDF
Study on the FEM design of reinforced earth retaining wall with geogrid 被引量:4
15
作者 Song Yakun Zheng Yingren +1 位作者 Tang Xiaosong Zhang Yufang 《Engineering Sciences》 EI 2010年第3期71-80,共10页
At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in r... At present,limit equilibrium method is often adopted in the design of reinforced earth retaining wall. Geotechnical engineers home and abroad have done a lot of work to improve the traditional calculation methods in recent years,while there are lots of defects. This paper first identifies the location of failure surface and safety factor through the finite element program of PLAXIS and then analyses the influencing factors of the stability of reinforced earth retaining wall with geogrid. The authors adopt strength reduction FEM (finite element method)in the design and stability analysis of reinforced earth retaining wall and have achieved some satisfying results. Without any assumptions,the new design method can automatically judge the failure mode of reinforced earth retaining wall,consider the influence of axial tensile stiffness of the reinforcement stripe on the stability of retaining wall,identify reasonable distance and length of the reinforcement stripe,and choose suitable parameters of reinforcement stripe,including strength,stiffness and pseudo-friction coefficient which makes the design optimal. It is proved through the calculation examples that this method is more reasonable,reliable and economical in the design of reinforced earth retaining wall. 展开更多
关键词 FEM strength reduction methods earth retaining walls optimization design
下载PDF
Reinforcement strength reduction in FEM for mechanically stabilized earth structures
16
作者 薛剑峰 陈建峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2691-2698,共8页
The factor of safety of mechanically stabilized earth(MSE) structures can be analyzed either using limit equilibrium method(LEM) or strength reduction method(SRM) in finite element/difference method. In LEM, the stren... The factor of safety of mechanically stabilized earth(MSE) structures can be analyzed either using limit equilibrium method(LEM) or strength reduction method(SRM) in finite element/difference method. In LEM, the strengths of the reinforcement members and soils are reduced with the same factor. While using the SRM, only soil strength is reduced during the calculation of the factor of safety. This causes inconsistence in calculating the factor of safety of the MSE structures. To overcome this, an iteration method is proposed to consider the strength reduction of the reinforcements in SRM. The method is demonstrated by using PLAXIS, a finite element software. The results show that the factor of safety converges after a few iterations. The reduction of strength has different effects on the factor of safety depending on the properties of the reinforcements and the soil, and failure modes. 展开更多
关键词 mechanically stabilized earth structures factor of safety strength reduction method iterative method
下载PDF
Stability and Influence Factors Analysis of Wharf Slope on Slippery Stratum
17
作者 LI Peng-fei LIU Ming-wei DAI Ru-lin 《International Journal of Technology Management》 2014年第7期34-37,共4页
With the growing tension of port shoreline resource in Three Gorges Reservoir area, many wharfs can only be constructed on slippery stratum with poor geological condition, which means buckling failure occurs easily. F... With the growing tension of port shoreline resource in Three Gorges Reservoir area, many wharfs can only be constructed on slippery stratum with poor geological condition, which means buckling failure occurs easily. FEM strength reduction method is used in analyzing slope stability of a wharf in Chongqing, and its accuracy is verified by comparing the acquired results with the computation of traditional limit equilibrium method. On this basis, the influences of reservoir water level variation, overload and backfill material behind the retaining wall, and soil share strength of wharf slope on slippery stratum are analyzed. Analysis shows that, there' s a most adverse water level in wharf slope, and the engineering proposals with a certain practical significance such as improve the drainage behind retaining wall, controll overload and improve the strength of backfill soil and subsoil are suggested. 展开更多
关键词 slippery stratum STABILITY factors analysis strength reduction method
下载PDF
Research on stability of a slope due to underground mining 被引量:1
18
作者 Hong-Jie LI Hui-Ya ZHONG Wei-Chao LI 《Journal of Coal Science & Engineering(China)》 2013年第4期474-482,共9页
This paper will present a detailed analysis of the deformation mechanism and stability assessment of the slope through field investigations, numerical modeling and measurements. Field investigation indicated that thre... This paper will present a detailed analysis of the deformation mechanism and stability assessment of the slope through field investigations, numerical modeling and measurements. Field investigation indicated that three thin coal seams encountered large mined-out area at one side and free surface of hill slope at the other side, which lead to the caving of roof strata movement, ground movement and crown crack along the preferred orientations of joints. The three-dimensional numeri- cal modeling study on the case demonstrated that the plasticity failure occurred gradually along with the extension of mined-out area in depth. When the depth of mining reached the verge defined by the seismic prospecting method, a large mount of tension failure occurred on the crown of the slope. The factor of safety was 1.36 calculated by the shear strength reduction technique, which indicated the slope was in stable state. The measurement showed that the residual deformation occurred before 1998 and became stable subsequently, which indicated that the residual deformation almost finished and the slope is in stable state. 展开更多
关键词 underground mining stability of slope numerical modeling strength reduction technique MONITORING
下载PDF
Application of the strength reduction FEM to diversion tunnel plug stability
19
作者 Su Kai Wu Hegao 《Engineering Sciences》 EI 2010年第4期26-30,共5页
Firstly,the common design principles for diversion tunnel plug are generalized,and two kinds of numerical analysis methods are discussed.Then the strength reduction FEM is introduced in numerical model analysis and th... Firstly,the common design principles for diversion tunnel plug are generalized,and two kinds of numerical analysis methods are discussed.Then the strength reduction FEM is introduced in numerical model analysis and the design steps of the plug's length are illustrated.During the progress to determine the plug's length,the equivalent plastic strain on the potential slip surface is assumed as the flag to tell the failure against sliding,and the plug stability is overall estimated from the plastic zone range and connectivity. 展开更多
关键词 diversion tunnel PLUG STABILITY safety factor strength reduction FEM
下载PDF
Stability analysis of the pillars between bedded salt cavern gas storages by cusp catastrophe model 被引量:2
20
作者 WANG TongTao YAN XmangZhen +1 位作者 YANG HengLin YANG XiuJuan 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第6期1615-1623,共9页
The failure of pillars between bedded salt cavern gas storages can be seen as processes that the deformations of pillars convert from continuous gradual change system to catastrophe state,which are typical nonlinear c... The failure of pillars between bedded salt cavern gas storages can be seen as processes that the deformations of pillars convert from continuous gradual change system to catastrophe state,which are typical nonlinear catastrophe problems.In the paper,the cusp catastrophe model is proposed to obtain the stability factors of pillars.It can overcome the shortages of traditional strength reduction finite element method(SR FEM) and greatly improve the accuracy of stability factors obtained by numerical simulations.The influences of cavern depth,gas pressure,pillar width,and time on the stability factors are studied.Y-1 and Y-2 salt cavern gas storages,located at Jiangsu province of China,were simulated as examples.The stability factors of pillars between Y-1 and Y-2 were evaluated,and the running parameters were recommended to ensure the pillars stability.The results showed that the cusp catastrophe model has high practicability and can precisely predict the stability factors.The stability factors are equidirectional with the increase of gas pressure and pillar width,but reverse to the increase of cavern depth and time.The stability factors of pillars between Y-1 and Y-2 are small for narrow widths,which are influenced greatly by gas pressure,time,pressure difference,and gas production rate.In order to ensure the safety of pillars,the lowest gas pressure,safe running time,max.pressure difference and max.gas production rate of Y-1 and Y-2 were recommended as 7 MPa,5 years,3 MPa,and 0.50 MPa/d,respectively. 展开更多
关键词 salt cavern gas storages pillar stability cusp catastrophe model stability factor numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部