To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature condit...To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature conditions based on the split Hopkinson pressure bar system.Experimental and analytical methods were applied to investigating the effect of temperature gradient on the stress waves.A high-speed camera was used to check the fracture characteristics of the specimens.The results demonstrate that the temperature gradient on the bars will not significantly distort the shape of the stress wave.The dynamic force balance is achieved even when the specimens are at a temperature of 400°C.The dynamic fracture toughness linearly develops with the increase of loading rate within the temperature range of 25-400°C,and high temperature has a strengthening effect on the dynamic fracture toughness.展开更多
A mathematical model and finite element model for analysis of temperature rise of the hoisting machine brake sys- tem was constructed, limit conditions were defined, and the law of temperature rise of brake shoes duri...A mathematical model and finite element model for analysis of temperature rise of the hoisting machine brake sys- tem was constructed, limit conditions were defined, and the law of temperature rise of brake shoes during emergent brake course was analyzed and calculated by using finite element software. By analyzing the calculation results, the law of tempera- ture change of surface of brake disk and shoes during the braking process was found. The law of brake shoes surface tempera- ture distribution and the law of temperature change along with thickness of brake shoes at brake time 0.5 s, 1.0 s and 1.5 s was analyzed. A hoisting machine emergent braking test was carried out. Finally, the author concluded that velocity rebound in the process of hoisting machine emergent brake is due to decreased friction coefficient caused by the temperature rise of the brake shoes surface.展开更多
基金support from the National Natural Science Foundation of China(No.41972283)。
文摘To investigate the influence of loading rate and high temperature on the dynamic fracture toughness of rock,dynamic fracture tests were carried out on notched semi-circular bend specimens under four temperature conditions based on the split Hopkinson pressure bar system.Experimental and analytical methods were applied to investigating the effect of temperature gradient on the stress waves.A high-speed camera was used to check the fracture characteristics of the specimens.The results demonstrate that the temperature gradient on the bars will not significantly distort the shape of the stress wave.The dynamic force balance is achieved even when the specimens are at a temperature of 400°C.The dynamic fracture toughness linearly develops with the increase of loading rate within the temperature range of 25-400°C,and high temperature has a strengthening effect on the dynamic fracture toughness.
基金Supported by the National Natural Science Foundation of China (50875252)
文摘A mathematical model and finite element model for analysis of temperature rise of the hoisting machine brake sys- tem was constructed, limit conditions were defined, and the law of temperature rise of brake shoes during emergent brake course was analyzed and calculated by using finite element software. By analyzing the calculation results, the law of tempera- ture change of surface of brake disk and shoes during the braking process was found. The law of brake shoes surface tempera- ture distribution and the law of temperature change along with thickness of brake shoes at brake time 0.5 s, 1.0 s and 1.5 s was analyzed. A hoisting machine emergent braking test was carried out. Finally, the author concluded that velocity rebound in the process of hoisting machine emergent brake is due to decreased friction coefficient caused by the temperature rise of the brake shoes surface.