针对建筑元素特征提取不全、相似建筑风格识别困难等问题,提出一种显著区域抑制与多尺度特征融合(salient region suppression and multi-scale feature fusion,SRSMSFF)的建筑风格识别方法。首先,采用改进的Resnet18提取初始建筑特征...针对建筑元素特征提取不全、相似建筑风格识别困难等问题,提出一种显著区域抑制与多尺度特征融合(salient region suppression and multi-scale feature fusion,SRSMSFF)的建筑风格识别方法。首先,采用改进的Resnet18提取初始建筑特征。然后,设计显著区域抑制模块(salient region suppression module,SRSM),通过隐藏最具判别性区域,引导网络学习潜在区域的特征,并设计多尺度特征融合网络(multi-scale feature fusion,MSFF),将多尺度结构与显著区域抑制相结合,以获取更完整的建筑元素特征。接着,利用通道注意力赋予各通道相应的权重,以突出重要的通道信息。最后,大边距度量损失函数(large-margin Softmax loss function,L-Softmax)通过最大化特征嵌入空间的决策边界,改善相似建筑风格的识别。在公共建筑数据集10类、25类及自建中国古建筑数据集上的实验结果表明,本文方法的准确率分别达到80.21%、64.4%和88.21%,其性能优于目前的先进方法。展开更多
In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy...In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), electrochemical measurements, weight loss tests and Raman spectrometer were used to character the properties of the coating. As the Cu content increased from 7.3 wt% to 24.8 wt%, the corrosion current density of the Ni-Cu-P/n-TiN coating decreased from 10.80 to 4.34 ~tA. And the inclusion of Cu in NiP alloy resulted in refinement and less porosity in microstructure. The addition of TiN resulted in a slight decline in anti-corrosion property of the coating. As the mass loss test showed, Ni-24.8%Cu-P exhibited perfect corrosion resistance. Studies by Raman spectroscopy on coatings proved that Cu(II)3(PO4)(OH)3, Cu(OH)2 and CuO were examined while no compound of nickel was found, and Cu exhibited preferred corrosion in saline solution, providing cathodic protection to Ni alloy.展开更多
Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was stud...Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was studied.Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature.The ignition temperature increases as the volatile content of the sample decreases.TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature.But the peak of combustion shifts to higher temperatures as the heating rate is increased.The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.展开更多
In order to study the gas explosion suppression performance based on ferrocene, the self-constructed experimental facility was used to accomplish the experiment of gas explosion suppression. By means of thermogravimet...In order to study the gas explosion suppression performance based on ferrocene, the self-constructed experimental facility was used to accomplish the experiment of gas explosion suppression. By means of thermogravimetric analysis, the thermal characteristics of ferrocene have been gotten and the gas explosion suppression mechanism of ferrocene has been analyzed. The results show that ferrocene had good effects on gas explosion suppression, and the explosion pressure and flame propagation speed declined obviously. When ferrocene concentration is 0.08 g/L and methane volume concentration is 9.5%, the maximum explosion overpressure and maximum flame propagation speed of methane-air respectively decreased by about 59.5% and 19.6%, respectively. TG and DSC curves showed that the mass loss of ferrocene consists of two processes, which are sublimation and lattice fracture. The temperature of mass loss ranged from 128 ℃ to 230 ℃. The results showed profoundly theoretical significance to gas explosion suppression by ferrocene in coal mines.展开更多
文摘针对建筑元素特征提取不全、相似建筑风格识别困难等问题,提出一种显著区域抑制与多尺度特征融合(salient region suppression and multi-scale feature fusion,SRSMSFF)的建筑风格识别方法。首先,采用改进的Resnet18提取初始建筑特征。然后,设计显著区域抑制模块(salient region suppression module,SRSM),通过隐藏最具判别性区域,引导网络学习潜在区域的特征,并设计多尺度特征融合网络(multi-scale feature fusion,MSFF),将多尺度结构与显著区域抑制相结合,以获取更完整的建筑元素特征。接着,利用通道注意力赋予各通道相应的权重,以突出重要的通道信息。最后,大边距度量损失函数(large-margin Softmax loss function,L-Softmax)通过最大化特征嵌入空间的决策边界,改善相似建筑风格的识别。在公共建筑数据集10类、25类及自建中国古建筑数据集上的实验结果表明,本文方法的准确率分别达到80.21%、64.4%和88.21%,其性能优于目前的先进方法。
基金Project(K1403375-11)supported by Science and Technology Planning Project of Changsha,ChinaProject(2015D009)supported by the Planned Science and Technology Project of Qingyuan City,ChinaProject(2015B04)supported by the Planned Science and Technology Project of Qingcheng District,Qingyuan City,China
文摘In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), electrochemical measurements, weight loss tests and Raman spectrometer were used to character the properties of the coating. As the Cu content increased from 7.3 wt% to 24.8 wt%, the corrosion current density of the Ni-Cu-P/n-TiN coating decreased from 10.80 to 4.34 ~tA. And the inclusion of Cu in NiP alloy resulted in refinement and less porosity in microstructure. The addition of TiN resulted in a slight decline in anti-corrosion property of the coating. As the mass loss test showed, Ni-24.8%Cu-P exhibited perfect corrosion resistance. Studies by Raman spectroscopy on coatings proved that Cu(II)3(PO4)(OH)3, Cu(OH)2 and CuO were examined while no compound of nickel was found, and Cu exhibited preferred corrosion in saline solution, providing cathodic protection to Ni alloy.
基金Project CPEUKF08-04 support by the Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education of China
文摘Thermo-gravimetric-analysis(TGA) was used to analyze the combustion characteristics of an oil shale and semi-cokes prepared from it.The effect of prior pyrolysis and TGA heating rate on the combustion process was studied.Prior pyrolysis affects the initial temperature of mass loss and the ignition temperature.The ignition temperature increases as the volatile content of the sample decreases.TG/DTG curves obtained at different heating rates show that heating rate has little effect on ignition temperature.But the peak of combustion shifts to higher temperatures as the heating rate is increased.The Coats-Redfern integration method was employed to find the combustion-reaction kinetic parameters for the burning of oil shale and oil shale semi-coke.
基金Supported by the National Natural Science Foundation of China (50974055, 50476033) the Doctor Foundation Project from the Henan Polytechnic University (B2011 - 101)
文摘In order to study the gas explosion suppression performance based on ferrocene, the self-constructed experimental facility was used to accomplish the experiment of gas explosion suppression. By means of thermogravimetric analysis, the thermal characteristics of ferrocene have been gotten and the gas explosion suppression mechanism of ferrocene has been analyzed. The results show that ferrocene had good effects on gas explosion suppression, and the explosion pressure and flame propagation speed declined obviously. When ferrocene concentration is 0.08 g/L and methane volume concentration is 9.5%, the maximum explosion overpressure and maximum flame propagation speed of methane-air respectively decreased by about 59.5% and 19.6%, respectively. TG and DSC curves showed that the mass loss of ferrocene consists of two processes, which are sublimation and lattice fracture. The temperature of mass loss ranged from 128 ℃ to 230 ℃. The results showed profoundly theoretical significance to gas explosion suppression by ferrocene in coal mines.