Based on the data from gauging stations, the changes in water discharge and sediment load of the Huanghe (Yellow) River were analyzed by using the empirical mode decomposition (EMD) method. The results show that t...Based on the data from gauging stations, the changes in water discharge and sediment load of the Huanghe (Yellow) River were analyzed by using the empirical mode decomposition (EMD) method. The results show that the periodic oscillation of water discharge and sediment load of the Huanghe River occurs at the interannual, decadal, and multi-decadal scales, caused by the periodic oscillations of precipitation, and E1 Nifio/Southern Oscillation (ENSO) af- fects water discharge by influencing precipitation distribution and contributes to periodic varations in precipitation and water discharge at interannual timescale. The water discharge and sediment load of the Huanghe River have decreased since the 1960s under the influence of precipitation and huamn activities, and human activities attribute more than precipitation to the reduction in the water discharge and sediment load, furthermore, water abstraction and water-soil conservation practices are the main causes of the decrease in water discharge and sediment load, respectively. The reduction in sediment load has directly impacted on the lower reaches of the Huanghe River and the river delta, causing considerable erosion of the river channel in the lower reaches since the 1970s along with River Delta changing siltation into erosion around 2000.展开更多
The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST...The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST. Here, the authors combine the complementary ensemble empirical mode decomposition (CEEMD) and support vector machine (SVM) methods to predict SST. Extensive tests from several different aspects are presented to validate the effectiveness of the CEEMD-SVM method. The results suggest that the new method works well in forecasting Northeast Pacific SST at a 12-month lead time, with an average absolute error of approximately 0.3℃ and a correlation coefficient of 0.85. Moreover, no spring predictability barrier is observed in our experiments.展开更多
An analysis of the Ishii ocean heat content(OHC) in the tropical Indian Ocean from the surface to 700-m depth shows that the OHC changes dramatically on the interannual timescale in the Indian Ocean.The first mode of ...An analysis of the Ishii ocean heat content(OHC) in the tropical Indian Ocean from the surface to 700-m depth shows that the OHC changes dramatically on the interannual timescale in the Indian Ocean.The first mode of empirical orthogonal function(EOF1) of the OHC shows that there is a strong air-sea interaction pattern in the Indian Ocean with a positive(negative) loading in the east and a negative(positive) loading in the west.This seesaw oscillation pattern influences the summer precipitation in China with a North-South reversed distribution.Composite analysis shows that during a positive(negative) OHC episode,an anomalous cyclonic(anticyclonic) circulation over the western Pacific and South China weakens(enhances) the monsoonal northward flow in the lower troposphere;meanwhile,anomalous meridional circulation connects the descending(ascending) branch over the Southeast Indian Ocean and the ascending(descending) branch in South China as well as a descending(ascending) branch over North China.Analysis of the mechanism behind these features suggests that(1) the accumulation of OHC-induced vorticity is related to the wave activity over the mid-latitudes and that(2) the meridional teleconnection induced by the Indo-Pacific air-OHC interaction appears over East Asia and the western Pacific.Both of these patterns can cause summer precipitation anomalies in China.展开更多
A hybrid intelligent method for evaluation of near optimal settings of friction welding process parameters of ductile iron was presented, The optimization of welding parameters was carried out in automatic cycle with ...A hybrid intelligent method for evaluation of near optimal settings of friction welding process parameters of ductile iron was presented, The optimization of welding parameters was carried out in automatic cycle with the use of support vector regression (SVR), genetic algorithm (GA) and imperialist competitive algorithm (ICA). The method suggested was used to determine welding process parameters by which the desired tensile strength was obtained in the friction welding of ductile iron. The highest tensile strength (TS) of 256.93 MPa was obtained using SVR plus GA method for the following friction welding parameters: heating force 40 kN, heating time 300 s and upsetting force 10.12 kN. The samples were welded by friction and subjected to the tensile strength test. The optimized values obtained by means of these hybrid techniques were compared with the experimental results. The application of hybrid intelligent methods allowed to increase the tensile strength joints from 211 to 258 MPa for the friction welder ZT-14 type.展开更多
Here we used Empirical Mode Decomposition (EMD) method to study seasonal variability and nonlinear trend of corrected AERONET Aerosol Optical Depth (AOD/Hi) and corrected PM10 mass concentrations (PMmxf(RH)) i...Here we used Empirical Mode Decomposition (EMD) method to study seasonal variability and nonlinear trend of corrected AERONET Aerosol Optical Depth (AOD/Hi) and corrected PM10 mass concentrations (PMmxf(RH)) in Hong Kong during 2005-2011. AODPrli is highly correlated with PMI0xf(RH) in semi-annual and annual time scales (with correlation coefficient 0.67 for semi-annual and 0.79 for annual components, 95% confidence interval). On the semi-annual scale, both AOD/Hi and PM10xf(RH) can capture the two maxima in March and October, respectively, with much stronger amplitude in March proba- bly due to the long-range transport of dust storm. On the annual cycle, the AOD/Hi and PMI0xf(RH), which are negatively correlated with the precipitation and solar radiation, vary coherently with the maxima in February. This annual peak occurs about one month earlier than the first peak of the semi-annual variability in March, but with only half amplitude. During 2005-2011, both AOD/Hi and PM10xf(RH) exhibit the pronounced decreasing trend with the mean rate of 14 gg m-3 per year for PM10xf(RH), which reflects the significant effects of the air pollution control policy in Hong Kong during the past decade. The nonlinear trend analysis indicates that the decreasing of PM10xf(RH) is slower than that of AOD/Hi when the AOD/Hi is less than 0.44 but becomes faster when the AOD/Hi exceeds 0.44. These results illustrate that the AERONET AOD can be used quantitatively to estimate local air-quality variability on the semi-annual, annual, and long-term trend time scales.展开更多
基金Under the auspices of Major State Basic Research Development Program of China(No.2010CB951202)Ocean Public Welfare Scientific Research Project,State Oceanic Administration of the People's Republic of China(No.200805063)
文摘Based on the data from gauging stations, the changes in water discharge and sediment load of the Huanghe (Yellow) River were analyzed by using the empirical mode decomposition (EMD) method. The results show that the periodic oscillation of water discharge and sediment load of the Huanghe River occurs at the interannual, decadal, and multi-decadal scales, caused by the periodic oscillations of precipitation, and E1 Nifio/Southern Oscillation (ENSO) af- fects water discharge by influencing precipitation distribution and contributes to periodic varations in precipitation and water discharge at interannual timescale. The water discharge and sediment load of the Huanghe River have decreased since the 1960s under the influence of precipitation and huamn activities, and human activities attribute more than precipitation to the reduction in the water discharge and sediment load, furthermore, water abstraction and water-soil conservation practices are the main causes of the decrease in water discharge and sediment load, respectively. The reduction in sediment load has directly impacted on the lower reaches of the Huanghe River and the river delta, causing considerable erosion of the river channel in the lower reaches since the 1970s along with River Delta changing siltation into erosion around 2000.
基金supported in part by the Major Research Plan of the National Natural Science Foundation of China[grant number91530204]the State Key Program of the National Natural Science Foundation of China[grant number 41430426]
文摘The sea surface temperature (SST) has substantial impacts on the climate; however, due to its highly nonlinear nature, evidently non-periodic and strongly stochastic properties, it is rather difficult to predict SST. Here, the authors combine the complementary ensemble empirical mode decomposition (CEEMD) and support vector machine (SVM) methods to predict SST. Extensive tests from several different aspects are presented to validate the effectiveness of the CEEMD-SVM method. The results suggest that the new method works well in forecasting Northeast Pacific SST at a 12-month lead time, with an average absolute error of approximately 0.3℃ and a correlation coefficient of 0.85. Moreover, no spring predictability barrier is observed in our experiments.
基金supported by the National Basic Research Program of China(973 Program):The impact of Southern Ocean-Indian Ocean air-sea processes on East Asia and the global climate change(Grant No.2010CB950300)National Foundation of the Indian Ocean Opening Voyage Project(Grant Nos. 41149903 and 41049908)+2 种基金the Knowledge Innovation Project for Distinguished Young Scholar of the Chinese Academy of Sciences (Grant No.KZCX2-EW-QN203)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YWQ11-02)the National Natural Science Foundation of China (Grant No.40906010)
文摘An analysis of the Ishii ocean heat content(OHC) in the tropical Indian Ocean from the surface to 700-m depth shows that the OHC changes dramatically on the interannual timescale in the Indian Ocean.The first mode of empirical orthogonal function(EOF1) of the OHC shows that there is a strong air-sea interaction pattern in the Indian Ocean with a positive(negative) loading in the east and a negative(positive) loading in the west.This seesaw oscillation pattern influences the summer precipitation in China with a North-South reversed distribution.Composite analysis shows that during a positive(negative) OHC episode,an anomalous cyclonic(anticyclonic) circulation over the western Pacific and South China weakens(enhances) the monsoonal northward flow in the lower troposphere;meanwhile,anomalous meridional circulation connects the descending(ascending) branch over the Southeast Indian Ocean and the ascending(descending) branch in South China as well as a descending(ascending) branch over North China.Analysis of the mechanism behind these features suggests that(1) the accumulation of OHC-induced vorticity is related to the wave activity over the mid-latitudes and that(2) the meridional teleconnection induced by the Indo-Pacific air-OHC interaction appears over East Asia and the western Pacific.Both of these patterns can cause summer precipitation anomalies in China.
文摘A hybrid intelligent method for evaluation of near optimal settings of friction welding process parameters of ductile iron was presented, The optimization of welding parameters was carried out in automatic cycle with the use of support vector regression (SVR), genetic algorithm (GA) and imperialist competitive algorithm (ICA). The method suggested was used to determine welding process parameters by which the desired tensile strength was obtained in the friction welding of ductile iron. The highest tensile strength (TS) of 256.93 MPa was obtained using SVR plus GA method for the following friction welding parameters: heating force 40 kN, heating time 300 s and upsetting force 10.12 kN. The samples were welded by friction and subjected to the tensile strength test. The optimized values obtained by means of these hybrid techniques were compared with the experimental results. The application of hybrid intelligent methods allowed to increase the tensile strength joints from 211 to 258 MPa for the friction welder ZT-14 type.
基金sponsored by the National Natural Science Foundation of China(Grant No.41206027)the China Postdoctoral Science Foundation(Grant No.2012M511460)+1 种基金the Key Laboratory of Global Change and Marine-Atmospheric Chemistry(Grant No.GCMAC1205)the Public Science and Technology Research Funds Projects of Ocean(Grant No.201105019)
文摘Here we used Empirical Mode Decomposition (EMD) method to study seasonal variability and nonlinear trend of corrected AERONET Aerosol Optical Depth (AOD/Hi) and corrected PM10 mass concentrations (PMmxf(RH)) in Hong Kong during 2005-2011. AODPrli is highly correlated with PMI0xf(RH) in semi-annual and annual time scales (with correlation coefficient 0.67 for semi-annual and 0.79 for annual components, 95% confidence interval). On the semi-annual scale, both AOD/Hi and PM10xf(RH) can capture the two maxima in March and October, respectively, with much stronger amplitude in March proba- bly due to the long-range transport of dust storm. On the annual cycle, the AOD/Hi and PMI0xf(RH), which are negatively correlated with the precipitation and solar radiation, vary coherently with the maxima in February. This annual peak occurs about one month earlier than the first peak of the semi-annual variability in March, but with only half amplitude. During 2005-2011, both AOD/Hi and PM10xf(RH) exhibit the pronounced decreasing trend with the mean rate of 14 gg m-3 per year for PM10xf(RH), which reflects the significant effects of the air pollution control policy in Hong Kong during the past decade. The nonlinear trend analysis indicates that the decreasing of PM10xf(RH) is slower than that of AOD/Hi when the AOD/Hi is less than 0.44 but becomes faster when the AOD/Hi exceeds 0.44. These results illustrate that the AERONET AOD can be used quantitatively to estimate local air-quality variability on the semi-annual, annual, and long-term trend time scales.