An efficient water use requires accurate estimations of crop ET (evapotranspiration). However, an accurate ET estimation is really difficult to achieve when big regions such as irrigation districts or complete water...An efficient water use requires accurate estimations of crop ET (evapotranspiration). However, an accurate ET estimation is really difficult to achieve when big regions such as irrigation districts or complete watersheds are involved. Satellite images are an alternative that can be used to estimate accurate crop ET for big regions. In the present study, two known methods were used to estimate crop ET, the METRIC model which was developed by the University of Idaho and a Kc-NDVI relationship. In the METRIC model, ET is estimated as a residual of the energy balance equation. The second method uses reference ET, and estimates a crop coefficient (K,.) as a linear function of the NDVI vegetation index. ET was estimated in a section of the Rio Mayo Irrigation District located in Sonora, Mexico using Landsat 7 satellite images. Crop ET of the main crops was estimated. Results show some differences between both methods. An average ET depth of 460 mm for the wheat average growing season was found when using METRIC, while an average ET depth of 421 mm was found when using the Kc-NDVI relationship. A water use total efficiency of 62% and 63% was found for METRIC and the Kc-NDVI relationship, respectively.展开更多
文摘An efficient water use requires accurate estimations of crop ET (evapotranspiration). However, an accurate ET estimation is really difficult to achieve when big regions such as irrigation districts or complete watersheds are involved. Satellite images are an alternative that can be used to estimate accurate crop ET for big regions. In the present study, two known methods were used to estimate crop ET, the METRIC model which was developed by the University of Idaho and a Kc-NDVI relationship. In the METRIC model, ET is estimated as a residual of the energy balance equation. The second method uses reference ET, and estimates a crop coefficient (K,.) as a linear function of the NDVI vegetation index. ET was estimated in a section of the Rio Mayo Irrigation District located in Sonora, Mexico using Landsat 7 satellite images. Crop ET of the main crops was estimated. Results show some differences between both methods. An average ET depth of 460 mm for the wheat average growing season was found when using METRIC, while an average ET depth of 421 mm was found when using the Kc-NDVI relationship. A water use total efficiency of 62% and 63% was found for METRIC and the Kc-NDVI relationship, respectively.