A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distingui...A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distinguish whether the changes of Lamb wave signals are induced by damage within a monitoring area or are only affected by temperature changes.Damage indices are defined after the Lamb wave signals are processed by Fourier transform,and a Monte Carlo procedure is used to obtain the damage threshold value for the damage indices at the undamaged state.If the damage indices in the operation state exceed the threshold value,the presence of damage is determined.Then,a probabilistic damage imaging algorithm displaying probabilities of the presence of damage within the monitoring area is adopted to fuse information collected from multiple actuator-sensor paths to identify the location of damage.Damage indices under damaged state are used to generate the diagnostic image.Experimental study on a stiffened composite panel with random temperature changes is performed to demonstrate the effectiveness of the proposed method.展开更多
One of the problems associated with loading a fully composite structure with joints is that the loads are not linear through the neutral axis of the structure but are collinear; this induces additional moment and crea...One of the problems associated with loading a fully composite structure with joints is that the loads are not linear through the neutral axis of the structure but are collinear; this induces additional moment and creates a load in the normal direction, which is typically a critical load because it can create delamination and can only be withstood if it is small. Another problem is that the structure is difficult to inspect using conventional methods because of limited accessibility. With fiber Bragg grating (FBG), the problem can potentially be solved in structures with a stiffness mismatch. The model used to represent the problem above is a composite stiffened skin with two loading cases: tensile and three-point bending. Additionally, FBG is used to monitor and characterize the delamination caused by both loading cases. Finite element modeling (FEM) with traction versus separation theory is performed to determine the critical area on the specimen for placement of the FBG before manufacturing and testing. In this research, FBG can successfully monitor and characterize delamination caused by both loading cases in structures that have mismatched stiffnesses. Also, FBG can predict the delamination growth quantitatively. A spectrum graph of the FBG results can be used to replace a conventional mechanical graph for use in structural health monitoring.展开更多
This paper details some significant findings on the use of the fiber Bragg grating (FBG) sensors for structural health monitoring (SHM) in aerospace fiber reinforced polymer (FRP) structures. A diminutive sensor...This paper details some significant findings on the use of the fiber Bragg grating (FBG) sensors for structural health monitoring (SHM) in aerospace fiber reinforced polymer (FRP) structures. A diminutive sensor provides a capability of imbedding inside FRP structures to monitor vital locations of damage. Some practical problems associated with the implementation of FBG based SHM systems in the aerospace FRP structures such as the difficulty of embedding FBG sensors during the manufacturing process and interrelation of distortion to FBG spectra due to internal damage, and other independent effects will be thoroughly studied. An innovative method to interpret FBG signals for identifying damage inside the structures will also be discussed.展开更多
基金Supported by the Aeronautical Science Foundation of China(2008ZA52012)the Six Kinds of Excellent Talent Project in Jiangsu Province of China(2010JZ004)the Research Foundation of Nanjing University of Aeronautics and Astronautics(NS2010027)~~
文摘A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distinguish whether the changes of Lamb wave signals are induced by damage within a monitoring area or are only affected by temperature changes.Damage indices are defined after the Lamb wave signals are processed by Fourier transform,and a Monte Carlo procedure is used to obtain the damage threshold value for the damage indices at the undamaged state.If the damage indices in the operation state exceed the threshold value,the presence of damage is determined.Then,a probabilistic damage imaging algorithm displaying probabilities of the presence of damage within the monitoring area is adopted to fuse information collected from multiple actuator-sensor paths to identify the location of damage.Damage indices under damaged state are used to generate the diagnostic image.Experimental study on a stiffened composite panel with random temperature changes is performed to demonstrate the effectiveness of the proposed method.
文摘One of the problems associated with loading a fully composite structure with joints is that the loads are not linear through the neutral axis of the structure but are collinear; this induces additional moment and creates a load in the normal direction, which is typically a critical load because it can create delamination and can only be withstood if it is small. Another problem is that the structure is difficult to inspect using conventional methods because of limited accessibility. With fiber Bragg grating (FBG), the problem can potentially be solved in structures with a stiffness mismatch. The model used to represent the problem above is a composite stiffened skin with two loading cases: tensile and three-point bending. Additionally, FBG is used to monitor and characterize the delamination caused by both loading cases. Finite element modeling (FEM) with traction versus separation theory is performed to determine the critical area on the specimen for placement of the FBG before manufacturing and testing. In this research, FBG can successfully monitor and characterize delamination caused by both loading cases in structures that have mismatched stiffnesses. Also, FBG can predict the delamination growth quantitatively. A spectrum graph of the FBG results can be used to replace a conventional mechanical graph for use in structural health monitoring.
文摘This paper details some significant findings on the use of the fiber Bragg grating (FBG) sensors for structural health monitoring (SHM) in aerospace fiber reinforced polymer (FRP) structures. A diminutive sensor provides a capability of imbedding inside FRP structures to monitor vital locations of damage. Some practical problems associated with the implementation of FBG based SHM systems in the aerospace FRP structures such as the difficulty of embedding FBG sensors during the manufacturing process and interrelation of distortion to FBG spectra due to internal damage, and other independent effects will be thoroughly studied. An innovative method to interpret FBG signals for identifying damage inside the structures will also be discussed.