期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种耗散型混沌神经元及其延时分类 被引量:1
1
作者 姚羽 高福祥 于戈 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第9期825-828,共4页
讨论了离散的、耗散型非线性神经元模型动力学·数值模拟表明模型中带有非零衰减系数时,自抑制神经元呈现出复杂的动力学模式,其中包括倍周期分叉通往混沌·利用混沌神经元对BP网络结果进行后处理,组成BP/CNN混合神经网络,利用... 讨论了离散的、耗散型非线性神经元模型动力学·数值模拟表明模型中带有非零衰减系数时,自抑制神经元呈现出复杂的动力学模式,其中包括倍周期分叉通往混沌·利用混沌神经元对BP网络结果进行后处理,组成BP/CNN混合神经网络,利用其倒分岔特性实现延时分类·构建的BP/CNN对典型的具有延时特性行为的SYNflooding滥用入侵进行检测,结果表明该混合神经网络具有灵活的延时分类能力,扩展了BP神经网络的计算能力,提供了一种新的分类处理方法,可以推广到识别其他延时分类的事件中· 展开更多
关键词 耗散型神经元 混沌神经网络 延时分类 SYN floading 滥用入侵检测
下载PDF
基于混沌神经元的延时滥用入侵检测模型 被引量:4
2
作者 姚羽 高福祥 于戈 《电子学报》 EI CAS CSCD 北大核心 2004年第8期1370-1373,共4页
在研究混沌神经元延时特性的基础上 ,构建了MLP/CNN混合前馈型神经网络 .提出基于混沌神经元的滥用入侵检测模型 ,它既具备MLP的分类功能 ,又具有混沌神经元的延时、收集和思维判断功能 ,具有灵活的延时分类特性 ,因而能够有效地识别分... 在研究混沌神经元延时特性的基础上 ,构建了MLP/CNN混合前馈型神经网络 .提出基于混沌神经元的滥用入侵检测模型 ,它既具备MLP的分类功能 ,又具有混沌神经元的延时、收集和思维判断功能 ,具有灵活的延时分类特性 ,因而能够有效地识别分布式入侵 .使用从网络数据流中获取的样本 ,以FTP口令穷举法入侵为例 ,对该模型进行仿真和整体测试 ,结果表明可以依据实际情况设置入侵判据 ,本文对FTP入侵检测的精确率在 98%以上 ,误报率和漏报率均小于 2 % .该模型可以推广到检测分布式DOS等具有延时特性的攻击行为和具有延时分类要求的其它系统中 . 展开更多
关键词 滥用入侵检测 MLP/CNN混合神经网络 混沌神经元 延时分类
下载PDF
Ipsilateral proximal and shaft femoral fractures 被引量:2
3
作者 Eric Lawson Soumaila Madougou +5 位作者 Pascal Chigblo Gildas Quenum Abdourahmane Ouangre Fiacre Tidjani Oswald Goukodadja Aristote Hans-Moevi Akue 《Chinese Journal of Traumatology》 CAS CSCD 2017年第3期155-157,共3页
Purpose: To study the management and evaluate anatomical and functional outcomes of patients with ipsilateral proximal and shaft femoral fractures. Methods: A retrospective, descriptive and analytic study lasted for... Purpose: To study the management and evaluate anatomical and functional outcomes of patients with ipsilateral proximal and shaft femoral fractures. Methods: A retrospective, descriptive and analytic study lasted for ten years and a half ranging from January 1, 2005 to June 30, 2015. The following parameters were studied: epidemiology, fracture char- acteristics, therapeutic, anatomical and functional outcomes. The correlation between different param- eters was analyzed with Fischer test. The significant threshold was defined for p value 〈0.05. Results: Ten medical files were registered. There were 7 men and 3 women, with a sex ratio of 2.33. The average age was 46 years (range: 29-62 years). It was about traffic road accidents in all cases. Motorcycle -motorcycle and motorcycle-car collision were most frequent. Average admission delay was 7 h (range: 1.5-24 h). Left side was most reached in 8 cases. According to Garden classification, there was type Ⅲ cervical fracture in 2 cases, type Ⅱ in 1 case and type Ⅳ in 1 case. According to Ender classification, there was type I trochanteric fracture in 3 cases, type Ⅵ in 2 cases and type Ⅶ in 1 case. According to AO classification, there was type A shaft fracture in 6 cases (A2 in 4 cases and A3 in 2 cases), type B in 2 cases (BI in 1 case and B2 in 1 case) and type C in 2 cases (CI in 1 case and C2 in 1 case). Average surgical delay was 28.7 days (range: 11-61 days). For proximal femoral fracture, Moore prosthesis was used in 1 case, blade plate 130° in 2 cases, long Gamma nail in 4 cases, double screwing in 2 cases and dynamic hip screw in 1 case. For shaft femoral fracture, blade plate 95° was used in 3 cases, low compressive plate in 2 cases. Osseous contention was achieved in 4 cases with long Gamma nail and in 1 case with long blade plate 130°. Nonunion of cervical fracture was achieved in 2 cases. The average osseous healing delay was 5.14 months (range: 3-12 months) for proximal femoral fracture and 5 months (range: 3-8 months) for shaft femoral fractures. According to Friedman and Wyman criteria, functional results were good in 4 cases, average in 4 cases and bad in 2 cases. Regarding implants, healing delay showed no statistic difference between one-implant group and two-implant group (p = 0.52), and among the patients with different functional outcomes (p = 0.52). Functional outcomes showed no statistic difference between one-implant group and two-implant group (p = 0.46). Conclusion: Ipsilateral proximal and shaft femoral fractures are relatively uncommon in our daily ac- tivities. It is difficult to recognize proximal femoral fractures which are unnoticed. Results are generally good if the doctors take the two fractures into account in the management. 展开更多
关键词 Femoral fractures Proximal fractures Shaft fractures
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部