The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance...The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.展开更多
The wireless mesh networks trathc are of selt:snmlarlty and the network pertOrmance is degraded by seltsimillar traffic. Network coding is a new technology which improves network performance. An algorithm is presente...The wireless mesh networks trathc are of selt:snmlarlty and the network pertOrmance is degraded by seltsimillar traffic. Network coding is a new technology which improves network performance. An algorithm is presented that it uses network coding to reduce queue length and delay time when self-similar traffic occurs. Based on synchronization, data packets are classified by destination address and lengths. Simulation results show that with the proposed synchronization techniques, network coding, even in scenarios with burst self-similar traffic, where network coding could not have been deployed so far, increases throughput and lowers packet loss in wireless mesh networks.展开更多
This paper investigates the problem of robust L1 model reduction for continuous-time uncertain stochastic time-delay systems. For a given mean-square stable system, our purpose is to construct reduced-order systems, s...This paper investigates the problem of robust L1 model reduction for continuous-time uncertain stochastic time-delay systems. For a given mean-square stable system, our purpose is to construct reduced-order systems, such that the error system between these two models is mean-square asymptotically stable and has a guaranteed L1 (also called peak-to-peak) performance. The peak-to-peak gain criterion is first established for stochastic time-delay systems, and the corresponding model reduction problem is solved by using projection lemma. Sufficient conditions are obtained for the existence of admissible reduced-order models in terms of linear matrix inequalities (LMIs) plus matrix inverse constraints. Since these obtained conditions are not expressed as strict LMIs, the cone complementarity linearization (CCL) method is exploited to cast them into nonlinear minimization problems subject to LMI constraints, which can be readily solved by standard numerical software. In addition, the development of reduced-order models with special structures, such as the delay-free model, is also presented. The efficiency of the proposed methods is demonstrated via a numerical example.展开更多
基金the support provided by King Abdulaziz City for Science and Technology (KACST) through the "KACST Annual Program" at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project number AT-32-41
文摘The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.
基金Supported by the National Natural Science Foundation of China (60873082,61073186, 61073104, 60903058) China Postdoctoral Science Foundation (20090451108)the Science and Technology Planning Project of Hunan Province (2011FJ3237).
文摘The wireless mesh networks trathc are of selt:snmlarlty and the network pertOrmance is degraded by seltsimillar traffic. Network coding is a new technology which improves network performance. An algorithm is presented that it uses network coding to reduce queue length and delay time when self-similar traffic occurs. Based on synchronization, data packets are classified by destination address and lengths. Simulation results show that with the proposed synchronization techniques, network coding, even in scenarios with burst self-similar traffic, where network coding could not have been deployed so far, increases throughput and lowers packet loss in wireless mesh networks.
基金Sponsored by the Scientific and Technical Research Project Foundation of Education Department of Heilongjiang Province(Grant No. 10551013).
文摘This paper investigates the problem of robust L1 model reduction for continuous-time uncertain stochastic time-delay systems. For a given mean-square stable system, our purpose is to construct reduced-order systems, such that the error system between these two models is mean-square asymptotically stable and has a guaranteed L1 (also called peak-to-peak) performance. The peak-to-peak gain criterion is first established for stochastic time-delay systems, and the corresponding model reduction problem is solved by using projection lemma. Sufficient conditions are obtained for the existence of admissible reduced-order models in terms of linear matrix inequalities (LMIs) plus matrix inverse constraints. Since these obtained conditions are not expressed as strict LMIs, the cone complementarity linearization (CCL) method is exploited to cast them into nonlinear minimization problems subject to LMI constraints, which can be readily solved by standard numerical software. In addition, the development of reduced-order models with special structures, such as the delay-free model, is also presented. The efficiency of the proposed methods is demonstrated via a numerical example.