For the first-order integrating processes with long delay, the disturbance observer-based 2DoF control scheme is analyzed in detail with regard to the control input limitation. After that, a simple anti-windup scheme,...For the first-order integrating processes with long delay, the disturbance observer-based 2DoF control scheme is analyzed in detail with regard to the control input limitation. After that, a simple anti-windup scheme, without an additional parameter, is proposed to compensate for the adverse effects of the input saturation. The proposed method can properly keep the control signal saturated for an optimum length of time without discarding the control energy. The simulation results show that the control input saturation can dramatically degrade the closed loop system performance. Under the nonfinal and model uncertainty cases, the controller with anti-windup strategy will obtain fast and smooth responses. Furthermore, the simulation results illustrate that the proposed anti-windup scheme may achieve good performance for the high order integrating processes with long delay.展开更多
To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (I...To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.展开更多
文摘For the first-order integrating processes with long delay, the disturbance observer-based 2DoF control scheme is analyzed in detail with regard to the control input limitation. After that, a simple anti-windup scheme, without an additional parameter, is proposed to compensate for the adverse effects of the input saturation. The proposed method can properly keep the control signal saturated for an optimum length of time without discarding the control energy. The simulation results show that the control input saturation can dramatically degrade the closed loop system performance. Under the nonfinal and model uncertainty cases, the controller with anti-windup strategy will obtain fast and smooth responses. Furthermore, the simulation results illustrate that the proposed anti-windup scheme may achieve good performance for the high order integrating processes with long delay.
基金Project(2007011049) supported by the Natural Science Foundation of Shanxi Province,China
文摘To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.