The properties and the design of PWM systems are discussed. The relations among the orifice areas of the valves, initial times and the rate of piston areas are deduced. Also a PWM system is designed and some experimen...The properties and the design of PWM systems are discussed. The relations among the orifice areas of the valves, initial times and the rate of piston areas are deduced. Also a PWM system is designed and some experiments are done. The experiment results agree with those of theory analyses. It can be shown that the relations are correct and the conclusion of theory analyses is reasonable.展开更多
In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design pr...In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design problem as an H∞ model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H∞ optimization control technique, the existence conditions of the RFDF for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.展开更多
For the first-order integrating processes with long delay, the disturbance observer-based 2DoF control scheme is analyzed in detail with regard to the control input limitation. After that, a simple anti-windup scheme,...For the first-order integrating processes with long delay, the disturbance observer-based 2DoF control scheme is analyzed in detail with regard to the control input limitation. After that, a simple anti-windup scheme, without an additional parameter, is proposed to compensate for the adverse effects of the input saturation. The proposed method can properly keep the control signal saturated for an optimum length of time without discarding the control energy. The simulation results show that the control input saturation can dramatically degrade the closed loop system performance. Under the nonfinal and model uncertainty cases, the controller with anti-windup strategy will obtain fast and smooth responses. Furthermore, the simulation results illustrate that the proposed anti-windup scheme may achieve good performance for the high order integrating processes with long delay.展开更多
A robust model predictive control (MPC) algorithm for discrete time linear systems with time-delay (RPC-TDS) subjected to constrained input control is presented, where the polytopic uncertainties exist in state matric...A robust model predictive control (MPC) algorithm for discrete time linear systems with time-delay (RPC-TDS) subjected to constrained input control is presented, where the polytopic uncertainties exist in state matrices and input matrices. In the algorithm the standard optimization of quadratic objective function has been transformed into optimization of sum of N+1 upper bounds of the quadratic objective function with respect to N control moves and a state feedback control law, where N is the control horizon. The feasibility of the optimization problem guarantees that the algorithm is robustly stable. The simulation results verify the effectiveness of the proposed algorithm.展开更多
The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite ...The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent robust stability condition is derived and expressed in terms of linear matrix inequalities (LMIs). A suitable robust state feedback control law is presented, which guarantees that the resultant closed-loop system is regular, causal and stable for all admissible uncertainties. Numerical examples are given to demonstrate the applicability of the proposed method.展开更多
This paper investigates the problem of robust L1 model reduction for continuous-time uncertain stochastic time-delay systems. For a given mean-square stable system, our purpose is to construct reduced-order systems, s...This paper investigates the problem of robust L1 model reduction for continuous-time uncertain stochastic time-delay systems. For a given mean-square stable system, our purpose is to construct reduced-order systems, such that the error system between these two models is mean-square asymptotically stable and has a guaranteed L1 (also called peak-to-peak) performance. The peak-to-peak gain criterion is first established for stochastic time-delay systems, and the corresponding model reduction problem is solved by using projection lemma. Sufficient conditions are obtained for the existence of admissible reduced-order models in terms of linear matrix inequalities (LMIs) plus matrix inverse constraints. Since these obtained conditions are not expressed as strict LMIs, the cone complementarity linearization (CCL) method is exploited to cast them into nonlinear minimization problems subject to LMI constraints, which can be readily solved by standard numerical software. In addition, the development of reduced-order models with special structures, such as the delay-free model, is also presented. The efficiency of the proposed methods is demonstrated via a numerical example.展开更多
Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and...Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and tuning. In this paper, the stabilization problems of the classical proportionalintegral-derivative (PID) controller and the singleparameter PID controller (containing only one adjustable parameter) for integral processes with time delay are investigated, respectively. The complete set of stabilizing parameters of the classical PID controller is determined using a version of the Hermite-Biehler Theorem applicable to quasipolynomials. Since the stabilization problem of the singie-parameter PID controller cannot be treated by the Hermite-Biehler Theorem, a simple method called duallocus diagram is employed to derive the stabilizing range of the single-parameter PID controller. These results provide insight into the tuning of the PID controllers.展开更多
This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique...This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique, a newapproach is proposed to derive some new exponential synchronization criteria.The restriction that the control widthhas to be larger than the time delay is removed.This leads to a larger application scope for our method.Moreover, notranscendental equation is involved in the obtained result, which reduces the computational burden.Two examples aregiven to validate the theoretical results.展开更多
The problem of H∞ stability analysis and control synthesis of switched systems with delayed states under arb/trary switchirg laws is considered. By means of Lyapunov function and linear matrix inequality tools, suffi...The problem of H∞ stability analysis and control synthesis of switched systems with delayed states under arb/trary switchirg laws is considered. By means of Lyapunov function and linear matrix inequality tools, sufficient ctmdition of H∞ stability is presented in terms of linear matrix inequalities. Furthermore, the robust H∞ control synthesis via state feedback and output feedack is studied. Finally, a numerical example is given to demonstrate the effectiveness of the proposed method.展开更多
This paper presents the containment analysis and design of heterogeneous linear multi-agent systems(MAS)with time-delay under the output regulation.The leaders are treated as exosystems and an modified output regulati...This paper presents the containment analysis and design of heterogeneous linear multi-agent systems(MAS)with time-delay under the output regulation.The leaders are treated as exosystems and an modified output regulation error is designed,which can deal with more than one leader in containment control,then the containment problem will be turned into an output regulation problem.A novel analysis framework of the output regulation is proposed to design a dynamic state feedback control law for containment error and distributed observer when the agents cannot receive external system signal,which guarantees the convergence of all follower agents to the dynamic convex hull spanned by the leaders.The system stability for time-delay containment is proved by the output regulation method instead of the Lyapunov method.Finally,a numerical example is given to illustrate the validity of the theoretical results.展开更多
文摘The properties and the design of PWM systems are discussed. The relations among the orifice areas of the valves, initial times and the rate of piston areas are deduced. Also a PWM system is designed and some experiments are done. The experiment results agree with those of theory analyses. It can be shown that the relations are correct and the conclusion of theory analyses is reasonable.
基金Project (No. 60574081) supported by the National Natural ScienceFoundation of China
文摘In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design problem as an H∞ model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H∞ optimization control technique, the existence conditions of the RFDF for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.
文摘For the first-order integrating processes with long delay, the disturbance observer-based 2DoF control scheme is analyzed in detail with regard to the control input limitation. After that, a simple anti-windup scheme, without an additional parameter, is proposed to compensate for the adverse effects of the input saturation. The proposed method can properly keep the control signal saturated for an optimum length of time without discarding the control energy. The simulation results show that the control input saturation can dramatically degrade the closed loop system performance. Under the nonfinal and model uncertainty cases, the controller with anti-windup strategy will obtain fast and smooth responses. Furthermore, the simulation results illustrate that the proposed anti-windup scheme may achieve good performance for the high order integrating processes with long delay.
基金The project is supported by the National High Technology Research and Development (863) Programof China (2002AA412010)
文摘A robust model predictive control (MPC) algorithm for discrete time linear systems with time-delay (RPC-TDS) subjected to constrained input control is presented, where the polytopic uncertainties exist in state matrices and input matrices. In the algorithm the standard optimization of quadratic objective function has been transformed into optimization of sum of N+1 upper bounds of the quadratic objective function with respect to N control moves and a state feedback control law, where N is the control horizon. The feasibility of the optimization problem guarantees that the algorithm is robustly stable. The simulation results verify the effectiveness of the proposed algorithm.
基金Project (Nos. 60434020 and 60604003) supported by the NationalNatural Science Foundation of China
文摘The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent robust stability condition is derived and expressed in terms of linear matrix inequalities (LMIs). A suitable robust state feedback control law is presented, which guarantees that the resultant closed-loop system is regular, causal and stable for all admissible uncertainties. Numerical examples are given to demonstrate the applicability of the proposed method.
基金Sponsored by the Scientific and Technical Research Project Foundation of Education Department of Heilongjiang Province(Grant No. 10551013).
文摘This paper investigates the problem of robust L1 model reduction for continuous-time uncertain stochastic time-delay systems. For a given mean-square stable system, our purpose is to construct reduced-order systems, such that the error system between these two models is mean-square asymptotically stable and has a guaranteed L1 (also called peak-to-peak) performance. The peak-to-peak gain criterion is first established for stochastic time-delay systems, and the corresponding model reduction problem is solved by using projection lemma. Sufficient conditions are obtained for the existence of admissible reduced-order models in terms of linear matrix inequalities (LMIs) plus matrix inverse constraints. Since these obtained conditions are not expressed as strict LMIs, the cone complementarity linearization (CCL) method is exploited to cast them into nonlinear minimization problems subject to LMI constraints, which can be readily solved by standard numerical software. In addition, the development of reduced-order models with special structures, such as the delay-free model, is also presented. The efficiency of the proposed methods is demonstrated via a numerical example.
基金National Science Foundation of China (60274032) SRFDP (20030248040) SRSP (04QMH1405)
文摘Due to the widespread application of the PID controller in industrial control systems, it is desirable to know the complete set of all the stabilizing PID controllers for a given plant before the controller design and tuning. In this paper, the stabilization problems of the classical proportionalintegral-derivative (PID) controller and the singleparameter PID controller (containing only one adjustable parameter) for integral processes with time delay are investigated, respectively. The complete set of stabilizing parameters of the classical PID controller is determined using a version of the Hermite-Biehler Theorem applicable to quasipolynomials. Since the stabilization problem of the singie-parameter PID controller cannot be treated by the Hermite-Biehler Theorem, a simple method called duallocus diagram is employed to derive the stabilizing range of the single-parameter PID controller. These results provide insight into the tuning of the PID controllers.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60774039,60974024,and 61074089CityU Research Enhancement Fund 9360127,CityU SRG 7002355
文摘This paper concerns with the master-slave exponential synchronization analysis for a class of general Lur'esystems with time delay.Different from the previous methods based on the differential inequality technique, a newapproach is proposed to derive some new exponential synchronization criteria.The restriction that the control widthhas to be larger than the time delay is removed.This leads to a larger application scope for our method.Moreover, notranscendental equation is involved in the obtained result, which reduces the computational burden.Two examples aregiven to validate the theoretical results.
基金supported by the National“863”Foundation of China under Grant 2007AA04Z193
文摘The problem of H∞ stability analysis and control synthesis of switched systems with delayed states under arb/trary switchirg laws is considered. By means of Lyapunov function and linear matrix inequality tools, sufficient ctmdition of H∞ stability is presented in terms of linear matrix inequalities. Furthermore, the robust H∞ control synthesis via state feedback and output feedack is studied. Finally, a numerical example is given to demonstrate the effectiveness of the proposed method.
基金National Key Research and Development Plan of China(No.2017YFB1201003-020)National Natural Science Foundation of China(Nos.61663020,61661027)。
文摘This paper presents the containment analysis and design of heterogeneous linear multi-agent systems(MAS)with time-delay under the output regulation.The leaders are treated as exosystems and an modified output regulation error is designed,which can deal with more than one leader in containment control,then the containment problem will be turned into an output regulation problem.A novel analysis framework of the output regulation is proposed to design a dynamic state feedback control law for containment error and distributed observer when the agents cannot receive external system signal,which guarantees the convergence of all follower agents to the dynamic convex hull spanned by the leaders.The system stability for time-delay containment is proved by the output regulation method instead of the Lyapunov method.Finally,a numerical example is given to illustrate the validity of the theoretical results.