基于延时反馈混沌控制方法和相空间压缩法,提出一种改进的延时反馈混沌控制方法。该方法不仅可用于单个吸引子混沌系统的控制,而且由于克服了Pyragas控制方法的不能简便地将混沌系统稳定到嵌入在不同混沌吸引子内周期轨道的不足,也可以...基于延时反馈混沌控制方法和相空间压缩法,提出一种改进的延时反馈混沌控制方法。该方法不仅可用于单个吸引子混沌系统的控制,而且由于克服了Pyragas控制方法的不能简便地将混沌系统稳定到嵌入在不同混沌吸引子内周期轨道的不足,也可以用于多个混沌吸引子混沌系统的控制。以Bonhoeffer-van der Pol系统为例,数值验证此改进方法用于两个混沌吸引子系统控制的有效性,结果表明,在延时反馈控制中增加适当的相空间限制器,可以快捷地将系统稳定在期望的周期轨道上。展开更多
The signals and the neuronal mechanisms that underlying the behavior, actions, and action-directed goals in man and animals during conscious state are not fully understood, and the neuro-dynamic mechanisms and the sou...The signals and the neuronal mechanisms that underlying the behavior, actions, and action-directed goals in man and animals during conscious state are not fully understood, and the neuro-dynamic mechanisms and the source of these neuronal signals are not authenticated. Temporal judgment alone can neither account for neural signaling necessary for emergence of conscious act nor explain RP (Readiness Potential, the accepted neural correlate time needed for the neurons to fire) that precedes the onset of action or the latency time of 0.5 ms that precedes the conscious act found by Libet. Neuronal feedback mechanisms between the heart and the brain seem feasible and logical suggestions to be considered, so clearly, I would suggest that the onset of a conscious-directed goal, conscious action, freewill, intension, and the neural signals and mechanisms that control them may depend upon the interaction between two sources: (1) the brain and (2) the heart. The temporal-cardiac (neural system) interaction has been well established in heart-brain interaction studies by many workers who found that the work of the heart precedes that of the brain in EEG (electroencephalography) findings in conscious stimulation, which may explain and account for RP time and the 0.5 ms latency period of Libet's important findings. According to my hypothesis (AlFaki 2009) and views, the temporal neurons in the soma to-sensory cortex will respond to conscious stimulation only after receiving neuronal signals from the cardiac neurons in the neural plexus of the heart; after variable millisecond equivalent to RP or Libet's latency period prior to temporal neuronal firinging in response to conscious act, this time is the time needed by cardiac neurons to process and signal information to the brain through feedback mechanism and heart-brain interaction.展开更多
The auto-correlation function and the cross-correlation of an autonomous stochastic system with nonlinear time-delayed feedback are investigated by using the stochastic simulation method. There are prominent differenc...The auto-correlation function and the cross-correlation of an autonomous stochastic system with nonlinear time-delayed feedback are investigated by using the stochastic simulation method. There are prominent differences be- tween the roles of quadratic time-delayed feedback and cubic time-delayed feedback on the correlations of an autonomous stochastic system. Under quadratic time-delayed feedback, the nonlinear time delay fails to improve the noisy state of the autonomous stochastic system, the auto-correlation decreases monotonously to zero, and the cross-correlation increases monotonously to zero with the decay time. Under cubic time-delayed feedback, the nonlinear time delay can improve the noisy state of the autonomous stochastic system; the auto-correlation and the cross-correlation show periodical oscillation and attenuation, finally tending to zero with the decay time. Comparing the correlations of the system between with nonfinear time-delayed feedback and linear time-delayed feedback, we find that nonlinear time-delayed feedback lowers the correlation strength of the autonomous stochastic system.展开更多
文摘基于延时反馈混沌控制方法和相空间压缩法,提出一种改进的延时反馈混沌控制方法。该方法不仅可用于单个吸引子混沌系统的控制,而且由于克服了Pyragas控制方法的不能简便地将混沌系统稳定到嵌入在不同混沌吸引子内周期轨道的不足,也可以用于多个混沌吸引子混沌系统的控制。以Bonhoeffer-van der Pol系统为例,数值验证此改进方法用于两个混沌吸引子系统控制的有效性,结果表明,在延时反馈控制中增加适当的相空间限制器,可以快捷地将系统稳定在期望的周期轨道上。
文摘The signals and the neuronal mechanisms that underlying the behavior, actions, and action-directed goals in man and animals during conscious state are not fully understood, and the neuro-dynamic mechanisms and the source of these neuronal signals are not authenticated. Temporal judgment alone can neither account for neural signaling necessary for emergence of conscious act nor explain RP (Readiness Potential, the accepted neural correlate time needed for the neurons to fire) that precedes the onset of action or the latency time of 0.5 ms that precedes the conscious act found by Libet. Neuronal feedback mechanisms between the heart and the brain seem feasible and logical suggestions to be considered, so clearly, I would suggest that the onset of a conscious-directed goal, conscious action, freewill, intension, and the neural signals and mechanisms that control them may depend upon the interaction between two sources: (1) the brain and (2) the heart. The temporal-cardiac (neural system) interaction has been well established in heart-brain interaction studies by many workers who found that the work of the heart precedes that of the brain in EEG (electroencephalography) findings in conscious stimulation, which may explain and account for RP time and the 0.5 ms latency period of Libet's important findings. According to my hypothesis (AlFaki 2009) and views, the temporal neurons in the soma to-sensory cortex will respond to conscious stimulation only after receiving neuronal signals from the cardiac neurons in the neural plexus of the heart; after variable millisecond equivalent to RP or Libet's latency period prior to temporal neuronal firinging in response to conscious act, this time is the time needed by cardiac neurons to process and signal information to the brain through feedback mechanism and heart-brain interaction.
基金Supported by the National Natural Science Foundation of China under Grant No.11265012Yunnan Province Open Key Laboratory of Mechanics in Colleges and Universities
文摘The auto-correlation function and the cross-correlation of an autonomous stochastic system with nonlinear time-delayed feedback are investigated by using the stochastic simulation method. There are prominent differences be- tween the roles of quadratic time-delayed feedback and cubic time-delayed feedback on the correlations of an autonomous stochastic system. Under quadratic time-delayed feedback, the nonlinear time delay fails to improve the noisy state of the autonomous stochastic system, the auto-correlation decreases monotonously to zero, and the cross-correlation increases monotonously to zero with the decay time. Under cubic time-delayed feedback, the nonlinear time delay can improve the noisy state of the autonomous stochastic system; the auto-correlation and the cross-correlation show periodical oscillation and attenuation, finally tending to zero with the decay time. Comparing the correlations of the system between with nonfinear time-delayed feedback and linear time-delayed feedback, we find that nonlinear time-delayed feedback lowers the correlation strength of the autonomous stochastic system.